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Chapter 1

Introduction and Overview

This document describes research conducted by SRI International (SRI) on the Office
of Naval Research (ONR) project Distributed Reasoning and Planning (Contract
N00014-89-C-0095) over the 24-month period from May 1991 to May 1993.

A central focus in artificial intelligence (AI) research is the development of systems
that are capable of reasoning about their environments and of planning appropriate
courses of action to pursue. Yet for many applications, it is insufficient to rely on
a single, autonomous system; instead, a network of physically distributed computer
systems must be used. Each of those systems must itself have significant reasoning
and planning capabilities, that is, it must be an intelligent agent in its own right.
Research in distributed reasoning and planning is concerned with the development of
a theoretical framework for designing, building, and managing networks of intelligent
agents, which can plan in cooperation with one another to achieve given goals.

Achieving the goal of powerful multiagent systems such as these will require re-
search advances both in the reasoning abilities of the individual agents and in in-
teragent coordination and communication strategies. Most traditional AI planning
systems are inadequate for multiagent domains, because of the simplifying assump-
tions they make. For example, they assume that there is unlimited time available
to generate a plan. But multiagent domains are inherently dynamic, because each
agent can act independently to change the environment. As a result, the assumption
of unlimited reasoning time is invalid, because the environment may change in crit-
ical ways during reasoning, and prompt reaction to such change is necessary. Other
assumptions made by traditional planning and reasoning systems that are inappropri-
ate for multiagent distributed systems include the assumption of common knowledge
of all aspects of the domain as opposed to spatially distributed, specialized knowl-
edge found in distributed sensor domains; centralized construction, distribution, and
synchronization of a single joint plan; and unlimited and correct knowledge of other
agents' knowledge, intentions, and goals.
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In our research, we have therefore been developing improved models of individual
planning and reasoning processes that do not rely on these sort of assumptions, as
well as techniques that can be used by agents to coordinate their plans. In the last
two years, we have concentrated on the following areas:

"* Reasoning with analogical representations, particularly with respect to using
and learning maps.

"* Models of intention and belief that are appropriate in multiagent domains.

"* Models of causation. These models are important in deciding what the conse-
quences of agent actions will be.

In the remainder of this section, we first review the characteristics of cooperative
multiagent domains. We also review our basic research approach: the adoption of
belief-desire-intention (BDI) models of agent state.

In subsequent sections, we provide more detail about the technical aspects of the
research we have conducted over the past 24 months. Finally, the appendices contain
a selection of the technical papers that we have produced during this period.

1.1 Cooperative Multiagent Domains

Many applications of interest to the Navy require a system of distributed proces-
sors, sensors, and effectors. Such systems include distributed command and control,
intelligence-gathering networks, squadrons of small submersible vehicles for subma-
rine tracking, and systems for fault isolation and repair of equipment in dangerous or
difficult conditions.

Some tasks require sensory surveillance of large areas of land or water by spatially
distributed units. Operational considerations often require that these units be able to
make local decisions on how best to deploy their sensors. In many cases, it is desirable
that the units be mobile, and able to perform other actions. These units will need to
communicate with other agents to exchange information about their environments,
current goals and intentions. Agents often need to cooperate to process information
effectively, and to decide on an effective strategy for obtaining further information.

Multiagent systems have the advantage of tolerance to faults: if one agent cannot
effect a given task, then the task may still be achieved with the cooperation of others.
These systems also allow for evolutionary development, as single units can be updated
independently of the entire system.

Many of these considerations arise even for single agents. In dynamic worlds, an
autonomous agent must be able to reason about how it interacts with the changing
environment. At any given time, it will have many different goals to accomplish.
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Some of these are imposed by fiat as specific tasks that must be accomplished, for
example, patrolling a perimeter; others are related to maintaining the agent's own
ability to function and gather information about its environment. Often these goals
will make conflicting demands on the agent's limited resources, so that the resolution
of these conflicts becomes an important part of the reasoning process.

The approach we have taken is to consider a network of autonomous processes
cooperating with one another to achieve certain goals. Because the cost of communi-
cation is high, it is imperative that each process be capable of reacting intelligently
on its own to changes in the environment. This is in contrast to more tightly cou-
pled distributed computational approaches, in which a central scheduler consolidates
information and control of the problem-solving process. Furthermore, because of the
uncertainty inherent in information gathered from sensory apparatus, and limitations
on the functional capabilities of the processes, each process must have a well-developed
model of its environment (including the presence of other cooperating agents), and
the ability to reason about actions and events in quite complex ways.

1.2 The BDI Model

In designing the agents that inhabit our distributed systems, the approach we have
adopted is the belief-desire-intention (BDI) model of mental states [Konolige, 1985c].
This model has been the foundation of our work on cognitive architectures [Konolige,
1982; Konolige, 1983; Konolige, 1984; Konolige, 1985a; Konolige, 1985b; Konolige,
1986], including architectures for planning in dynamic environments. It has also
been central to our theories of interagent coordination and communication, especially
plan recognition [Appelt, 1982; Bratman et al., 1988; Konolige and Pollack, 1989;
Pollack, 1986; Helft and Konolige, 19911. The BDI approach stands in contrast to
knowledge-compilation techniques, in which explicit execution-time reasoning is sup-
planted by compiling into the agent all decisions about what to do in all situations.
We believe, along with many other researchers, that such compilation is infeasible for
complex environments of the type in which we are interested. However, adopting the
BDI approach for dynamic environments commits us to developing efficient reasoning
strategies that can function effectively under time constraints.

1.3 Hybrid Reasoning

In our proposal for this project, we stressed the need to develop automatic reasoning
systems capable of supporting the complex inferences necessary for reasoning about
cognitive state. One of the key aspects of these systems is the ability to do inference
based on natural representations of the world. In particular, agents will often want to
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refer to and communicate analogical representations of the world. The most familiar
form of such representations are maps. Maps contain geometric information about the
location of objects such as roads and cities. They also contain symbolic information
that can be useful to agents planning a route, for example, the fact that a road is
closed in winter. Human agents are very good at combining these diverse forms of
information in service of their goals. Typical AI reasoning systems are not so flexible,
and have trouble incorporating any analogical representations.

We have initiated a project that addresses the problem of using analogical rep-
resentaLions effectively in automated reasoning systems. Analogical representations
have the property that their structure embeds properties of the domain being mod-
eled. Maps provide a good example by the manner in which they embed a spatial
correspondence with the real world. The class hierarchies used in many knowledge
representation systems constitute a nonspatial analogical representation, with the tree
structure of the representation mimicking the hierarchical relation of class inclusion.
Analogical representations have long been of interest to the AI community, given their
dual abilities to encode information in a perspicuous manner and to facilitate efficient
manipulations of that informationi by exploiting embedded structural properties.

During the past two years, we have developed a formal framework for integrating
reasoning systems built on analogical and sentential representations; an overview of
this work appeared as a paper, "Reasoning with Analogical Representations," in the
proceedings of the Third International Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR92). The framework consists of a set of generic opera-
tions on analogical structures and deductive rules for applying those operations. The
framework supports both reasoning about analogical representations, which amounts
to a passive extraction of information from analogical structures for use by a sentential
reasoning system, and the more general task of reasoning with such representations.
The latter casts analogical representations in an active role, having them modified as
part of the deductive process. The integration rules were proven sound with respect to
an introduced model-theoretic semantics for hybrid systems that combine analogical
and sentential representations.

To demonstrate the viability of the formal theory, we implemented a prototype
hybrid analogical-sentential reasoner. The implementation was built on top of Mark
Stickel's KLAUS automated deduction system, using Myers' technology of universal
attachments (described by a forthcoming paper "Hybrid Reasoning using Universal
Attachment" to appear in the journal Artificial Intelligence).

Although our analogical-sentential framework was defined independently of any
domain, we have explored its application to the problem of reasoning with maps. Our
particular focus has been on the type of maps that our mobile robot can generate
from perceptual input as it navigates through an office building. Maps built from
sensor information generally have gaps corresponding to areas for which perception
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was unable to determine the relevant physical characteristics, due to either faulty sen-
sors, noise or insufficient perceptual cues. Our hybrid analogical-sentential reasoning
framework allows a sentential theory describing properties of the environment to be
incorporated into the map-making process. Thus, sentences in a logic can be com-
municated to the robot as a means of improving upon the information provided by
perception alone. This communication provides a means of augmenting sensor-based
models of the world with information that is beyond the perceptual capabilities of
the robot, leading to more accurate and more complete maps.

This work was presented at KR92, as well as several workshops.

1.4 Computational Methods for Reasoning about
Mental State

We have continued our work on the development of models of belief and intention, and
logics for reasoning about them. There are two separate research lines: ideal belief
systems, and the representation of intention. Autoepistemic (AE) logic is a formal
system characterizing agents that have complete introspective access to their own
beliefs. AE logic relies on a fixed point definition that has two significant parts. The
first part is a set of assumptions or hypotheses about the contents of the fixed point.
The second part is a set of reflection principles that link sentences with statements
about their provability. We have shown, in a paper published in the AAAI conference
in July 1992 ("Ideal Introspective Belief") that AE reasoners can be characterized in
terms of an assumption set of negatve beliefs about the world (e.g., "I don't believe
that I have an older sister"), together with reflection principles relating beliefs to
beliefs about beliefs (e.g., "If I believe X, then I believe that I believe X"). We
have shown that AE logic is not an ideal logic, in that negative assumptions are too
strong for an ideal introspective agent. This theoretical work can help in analyzing
metatheoretic systems in logic programming; this further result was presented in an
invited paper at the META92 workbLup in Uppsala, Sweden ("An Autoepistemic
Analysis of Metalevel Reasoning in Logic Programming").

We are also developing a representationalist logic of intention, which we believe
is better suited to the properties of intention than the existing normal modal logic of
intentions. Formalizations of cognitive state that include intentions and beliefs have
appeared in the recent literature [Cohen and Levesque, 1990; Rao and Georgeff, 1991;
Shoham, 1990; Konolige and Pollack, 1989]. With the exception of the work reported
here, these have all employed normal modal logics (NMLs), that is, logics in which
the semantics of the modal operators is defined by accessibility relations over possible
worlds. This is not surprising, since NMLs have proven to be a powerful tool for
modeling the cognitive attitudes of belief and knowledge. However, we argue that
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intention and belief are very different beasts, and that NMLs are ill-suited to a formal
theory of intention.

We have developed an alternative model of intention, one that is representation-
alist, in the sense that its semantic objects provide a more direct representation of
cognitive state of the intending agent. We argue that this approach results in a much
simpler model of intention than does the use of an NML, and that, moreover, it al-
lows us to capture interesting properties of intention that have not been addressed in
previous work. Further, the relation between belief and intention is mediated by the
fundamental structure of the semantics, and is independent of any particular choice
for temporal operators or theory of action. This gives us a very direct, simple, and se-
mantically motivated theory, and one that can be conjoined with whatever temporal
theory is appropriate for a given task.

This work will be presented at IJCAI93.

1.5 Causal Theories

We have also continued our work on proof-theoretic techniques for reasoning about
mental state, especially on abduction. Simply put, abduction is the process of rea-
soning from some observation to the best explanation for it. Abduction can be used
as a reasoning method for many different kinds of problems. Recently. we have con-
centrated on its application to causal and default reasoning, important components
of reasoning about mental state. In our previous work, we have shown that there
are two distinct formalizations for explanatory reasoning. The consistency-based ap-
proach treats the task as a deductive one, in which the explanation is deduced from a
background theory and a minimal set of abnormalities. The abductive method, on the
other hand, treats explanations as sentences that, when added to the background the-
ory, derive the observations. We have shown that there is a close connection between
these two formalizations in the context of simple causal theories: domain theories
in which a set of sentences are singled out as the explanatorily relevant causes of
observations.

In our current wcrk, we expand the idea of abductive inference in causal theories
to include defaults. Our theory is unique in that it integrates a formal notion of
causality with nonmonotonic reasoning techniques based on default logic and abduc-
tion. The main structure of the theory is a default causal net (DCN) representing
the causal connections among propositions in the domain. The causal net provides a
framework for the two nonmonotonic reasoning techniques of assuming defaults and
generating explanations for observations, allowing them to be combined in a princi-
pled way. Default causal nets, we claim, offer significant representational advantages
over current formal model-based diagnosis theories.
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"* DCNs distinguish between the strong explanation of the cause of an observation
versus the weaker explanation of an excuse for the consistency of the observa-
tion.

"* Preferences among explenations based on causal relations in DCNs can yield
better diagnoses than current model-based theories.

"* Because they are based on abductive reasoning, DCNs admit causal influences
that are n.ither normal or abnormal, but neutral.

Some of these advantages accrue because DCNs use an abductive approach to ex-
planation in diagnosis; others, especially the third, are a result of incorporating an
explicit causal relation.

This work was presented at the KR92, and accepted for publication in the journal
Annals of Mathematics and Artificial Intelligence.
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Chapter 2

Hybrid Reasoning

This sa.tion is based on research by Karen Myers and Kurt Konolige.
An-J!ogicai representations have long been of interest to the knowledge represen-

tation community [4; 5; 15; 161. The attraction of analogical representations lies
with their ability to store certain types of information that humans can readily pro-
cess but are problematic for sentential reasoning systems. For this project, we have
addressed the problem of using analogical representations effectively in automated
deduction systems. The primary outcome of this work is a formal framework for
combining analogical and deductive reasoning. The framework consists of a set of
generic operations on analogical structures and accompanying inference methods for
integrating analogical and sentential information. The capabilities of the framework
are demonstrated for the task of reasoning to extend the kind of incomplete maps
that might be constructed by a robot operating within an office building. The exam-
ples presented here have all been solved automatically by an implementation of the
integration framework.

Analogical representations encompass both explicit diagrams (as in [2; 3]) and
representation structures that are diagram-like. Although this latter class is not eas-
ily defined, diagram-like representations share with real diagrams the property of
certain structural correspondences with the domain being modeled. It is precisely
such correspondences that make analogical representations useful. For example, a
two-dimensional street map could be represented by graph-theoretic structures in
which nodes correspond to intersections and arcs correspond to road segments. Such
a representation is analogical with the world being mapped in two ways. First, paths
between nodes in the graph correspond to road connections in the world being mod-
eled. Second, there is a correspondence between the existence of objects in the world
and objects in the representation. For example, all roads are represented in the
graph; thus, the closure of the set of roads is implicit. In contrast, expressing such
closure information sententially would require an explicit statement that the given
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roads constitute all roads.

Our work applies equally well to both diagrams and diagram-like structures. For
this reason, we will not distinguish further between the two types. The terms diagram
and analogical representation will be used interchangeably in this section.

2.1 The Hybrid Framework

Reasoning with diagrams should not be accomplished by simply translating the dia-
gram contents into a sentential language, nor vice versa. Analogical structures pro-
vide compact representations of information that is cumbersome to express senten-
tially but generally lack the expressive power of sentential languages. Since sen-
tential theories are a more general representational technology, it is tempting to
translate analogical structures into first-order sentences en masse. But this strat-
egy would compromise the efficiency of the representation system since the spe-
cialized inference mechanisms for the analogical structures are replaced by general-
purpose deductive methods; this point is borne out by the experimental results of [9;
11]. Instead, we adopt a hybrid approach in which separate analogical and sentential
subsystems coexist and inference rules for translating information between the two
are defined.

Our hybrid framework is based on a set of generic operations for manipulating
analogical structures along with corresponding inference rules that invoke the oper-
ations. The operations and rules were chosen for their capacity to increase overall

reasoning competency through the appropriate use of analogical information. The
framework supports both the incorporation of diagrammatic information into the
sentential reasoner and the modification of diagrams to reflect information deduced

by sentential reasoning - in other words, both reasoning about and with diagrams.

2.1.1 Analogical Subsystem

The details of the analogical component will vary for different applications. Our
formal framework isolates the integration methods from the specifics of any particular
application through the use of an abstract characterization of the information stored
in the analogical system.

For example, a typical hallway map used by a mobile robot might contain the

I 1
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kind of information displayed in the following diagram:

owner:Ralph
type:office type:office

UI ,U2 L. U3

V type:hal(
(2.1)

The constants V and U, are symbolic names assigned to the hallway and the three
openings on it in the given scene. These objects and the relationships among them are
identified by the robot's perceptual interpretation mechanism, which detects relevant
geometric properties and segments sensory input into meaningful units (e.g., groups
line segments and intersegment spaces into objects such as corridors and significant
openings). We use the term diagram element for such objects. Prior knowledge about
the scene was used to determine the remainder of the information in this diagram,
namely that certain Ui are offices and that the leftmost office belongs to Ralph.

For any particular class of applications, there will be a fixed ontology of elements
and a fixed set of properties of interest. We consider two classes of properties: sym-
bolic labels for diagram elements and analogical relations among diagram elements.
Formally, we can represent the information about labels and relations for diagram
elements that is stored in an analogic representation S as a set of first-order models
Ms. While a diagram records only those relationships and elements that are known
to exist, each of these diagram models constitutes a possible completion of the partial
information provided by a diagram. For example, the type of U2 and the owners of
U2 and U3 are unspecified in the above diagram; a diagram model would fully specify
those relations.

Diagram models consist of a set of analogical relations A and a set of label relations
L over a universe U. Each member of A is a binary relation E. x E,, with E. C U
the set of diagram elements; each member of L is a relation E° x E1, with E, C U the
set of labels.

For the scene described by (2.1), the diagram elements are {V, U1, U2 , U,3}. We
choose the label relations TYPE(u, 1) and OWNS(u, 1), and the analogical relations
BES(u, v) (the opening u is next to the opening v) and INHALL(u, v) (opening u
is in hall v). The label set contains {Closet, Office, Ralph, Paul, Cyril} and possibly
other values. The choice of relations and elements is important in determining what
information in the analogic structure is abstracted in the hybrid system; here, for
example, whether an opening is to the right or left of another opening is apparent
from the structure, but not in the models.

A key feature of analogical representations is their capacity to implicitly embody
constraints that other representations must make explicit. For example, the map
structures embed the following constraints:
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"* Each opening has at most two adjacent openings.

"* Objects can have exactly one type.

"* Individuals can own offices but not closets.

"* At most one person can own a given office.

These diagram constraints can be built into the representation structures directly or
into the operations that manipulate the structures, depending on the given imple-
mentation. For example, a bit-map representation of (2.1) would embed the first
constraint directly through its spatial composition; the third constraint would most
likely be enforced by operations that manipulate the structure. Either way, diagram
constraints are necessarily reflected in diagram models. For instance, all diagram
models for (2.1) can have only one type relation for a given diagram element, because
of the second constraint above.

2.1.2 Sentential Subsystem

The sentential subsystem employs a first-order language and proof theory. As an
example of the expression and use of sentential information relative to diagrams,
consider the following statements:

Paul and Cyril have offices in hall V.
Ralph and Paul are not neighbors.

These statements could be translated into formulas for the sentential subsystem such
as:

RESIDES(Cyril, V) A RESIDES(Paul, V) (22)
--NBR(Ralph, Paul).

With respect to diagram (2.1), the first statement implies that U2 and U3 are offices,
one each owned by Cyril and Paul. This conclusion follows since {UI, U2, U3} con-
stitutes the set of all offices in V and Ralph is known to own U1. Deduction of this
result requires information that is implicit in the diagram's structure, namely that
each office can be owned by only one individual. With the second statement, the only
possible configuration of the scene is:

owner.aiph ownw:COyi owner.Ptu
tyl:Off ke M:0 tL Jpe•f:offe

V tlpe:ha (2.3)
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Our work provides the inferential tools needed to support these kinds of deductions.
In order to determine whether a given integration method behaves in an appropri-

ate fashion, it is necessary to provide a semantic account of the overall hybrid system.
Our work provides a model-theoretic account of such criteria. Underlying this work is
the introduced notion of the representational adequacy of an analogical structure for a
sentential theory, which informally indicates that no other analogical structure more
accurately represents a given sentential theory. Building on this concept, we present
definitions of soundness, derivational completeness (i.e., completeness with respect to
the sentential subsystem) and diagrammatic completeness (i.e., completeness with re-
spect to the analogical subsystem) for inference within a hybrid analogical-sentential
system.

2.2 The Inferential Calculus

The inferential calculus of the integration framework contains three rules: reflection,
evaluation, and domain enumeration. Each rule is defined relative to a domain-
independent diagram operation that supports the exchange of information between
the sentential and analogical subsystems.

Reflection

The reflection rule sanctions the transfer of information from the sentential to the
analogical subsystem. As such, it provides a means of transferring information de-
duced by the sentential subsystem into the analogical structures. The reflection rule
makes use of a collection of reflection procedures defined for each analogical predicate.
These procedures provide a means of directly inserting information into an analogical
structure. Each analogical relationship P(T) modeled in the analogical structure has
an accompanying reflection procedure INSERT.P(Y) for performing the modifications
to the analogical structure.

Evaluation

The evaluation rule sanctions replacement of ground instances of a predicate in for-
mulas of the sentential subsystem by either true or false, in accordance with the in-
formation content of the analogical structure. For each analogical relationship P(Y)
modeled in the analogical structure, we require an extraction procedure EVAL.P(Y)
for evaluating ground instances relative to a fixed diagram. These evaluation proce-
dures provide the sentential reasoner with information about primitive relationships
in the analogical structures.
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Domain Enumeration

Domain enumeration allows the elimination of quantifiers from formulas in the sen-
tential subsystem in certain cases through the introduction of an appropriate domain
of values that covers the relevant instantiations of the quantified variable. This set of
values is determined by examination of the current analogical structures.

For example, consider the assertion

3u. BES(u, U2) A OWNS(u, Paul) (2.4)

relative to diagram (2.1). The interpretation of this formula is that the diagram
element owned by Paul is located beside (12. The conjunct BES(u, U2) limits the
possibilities for this diagram element: according to (2.1), the element must be either
U1 or U3. As such, the formula OWNS(U1 , Paul) V OWNS(U3, Paul) follows from
(2.4). Similarly, the universally quantified formula

Vu. INHALL(u, V) D TYPE(u, Office) (2.5)

can be viewed as a statement about the predicate TYPE(u, Office), with INHALL(u, V)
serving as a filter on the set of relevant instantiations of the quantified variable.
According to the diagram (2.1), the only values that satisfy INHALL(u, V) are
{U 1 ,U 2,U 3} (i.e., the exact closure of INHALL(u,V) is {U1, U2,U3}). Thus, the
conjunction

A TYPE(d, Office)
dE•{U• ,U2,U3}

is equivalent to (2.5) with respect to models for diagram (2.1).
We refer to the technique used above for applying closure information to elimi-

nate quantifiers as domain enumeration. Domain enumeration does not apply to all
predicate instances containing a quantified variable. The formula 3u. -,BES(u, UI) A
TYPE(u, Closet) illustrates this point. In this case, the exact closure for BES(u, UI)
is not an appropriate restriction of the terms of £; elimination of the existential
quantifier using the exact closure would lead to unsound conclusions.

Our work has identified those cases for which domain enumeration is possible. Ap-
plication of domain enumeration requires the extraction of closure information from
the analogical structures. For a predicate P(Y), we use both the set of diagram ele-
ments that possibly satisfy P[x] (called minimal superclosure) and the set of elements
that definitely satisfy P(7) (the maximal subclosure). These closure approximations
give minimal upper and maximal lower bounds, respectively, for the precise set of
values that satisfy P(Y).

The inference rules of reflection, evaluation and domain enumeration have been
proven sound relative to our semantics for analogical-sentential hybrid systems. How-
ever, the integration rules are neither derivationally nor diagrammatically complete.
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The central problem is that the rules focus on properties of individuals and their rela-
tionships with other individuals, failing to account for embedded diagram constraints.
We have shown for the propositional case, though, that the refutational version of
derivational completeness is achievable using a slight generalization of our methods
that draws upon the techniques of theory resolution [181.

2.3 Structural Uncertainty

In diagram (2.1), all objects of relevance (the openings and the hall itself) have been
noted, and the analogical relations BES and INHALL are fully determined. Although
there is type and ownership information missing, the structure of the diagram is com-
plete. Not all diagrams share this completeness. When generating maps from percep-
tual input, noise or faulty sensors may both cause objects of interest to go undetected
and leave analogical relations only partially determined. In such circumstances, we
say that the diagram contains structural uncertainty.

The following diagram constitutes a variation on the scene described .by (2.1)
in which there is structural uncertainty between U, and U3. Here, both the BES
and INHALL relations are undetermined. Dashed lines indicate regions of structural
uncertainty:

o wner:Fi Iph

L pe-olce type:office

V type:haII (2.6)

Sentential information can also be used to reduce structural uncertainty in diagrams:
given the sentences Ralph and Cyril are neighbors and Cyril is Paul's only neighbor,
the diagram (2.3) follows from (2.6). Our integration framework is capable of dealing
with structural uncertainty, and can be used to solve the above example.

2.4 Summary

The integration framework has been implemented on top of the KLAUS automated
deduction system [19] using the method of universal attachment [10; 11] to formulate
the integration rules. The system has been successfully applied to problems involving
reasoning with maps, including the examples presented here.

While analogical representations have received much attention in recent years from
psychologists [6; 7; 8], there have been few advances in understanding the computa-
tional aspects of analogical reasoning. Until recently, most computationally oriented
work has focused on properties of particular classes of diagrams (e.g., Venn diagrams
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[14; 13], Euler circles [171, qualitative reasoning [1; 3; 12], geometry [4]), ignoring more
general aspects of reasoning diagrammatically. Our work addresses the broader ques-
tion of domain-independent inference techniques for reasoning involving analogical
representations.
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Chapter 3

Minimal AE Logic

This section is based on research by Kurt Konolige.

3.1 Introduction

An important aspect of an agent's reasoning is the ability to introspect about what
he believes or does not believe. One of the research lines we pursued was to ask
what kind of introspective capability an ideal agent should have. This question is
not easily answered, since it depends on what kind of model we take for the agent's
representation of his own beliefs. Autoepistemic logic (Moore [Moore, 1985]) uses a
sentential or list semantics, which looks like this:

Beliefs

pv T

-Lp:) ol

q

The beliefs of the agent are represented by sentences in a formal language. For
simplicity, we consider just a propositional language 4c0, and a modal extension C1
which has modal atoms of the form Lo, where 0 is a sentence of 4o.
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The arrow indicates that the intended semantics of the beliefs from £4 is given by
the real world, for example, the belief q is the agent's judgment that q is true in the
real world. Of course an agent's beliefs may be false, so that in fact q may not hold in
the world. On the other hand, beliefs of the form Lo refer to the agent's knowledge
of his own beliefs, so the semantics is just the belief set itself.

An agent starts with an initial set of beliefs, the premises. Through assumptions
and derivations, he accumulates further beliefs, arriving finally at a belief set that is
based on the premises. For an agent to be ideally introspective, the belief set F must
satisfy the following equations:

The premises are in r.
4'EFand•'E o--4 LOEF (3.1)
O rFand ECEo-- -,Lq5Er

Any set F from C1 that satisfies these conditions, and is closed under tautological
consequence, will be called £ 1-stable (or simply stable) for the premises r. The
definition and term "stable set" are from Stalnaker [Stalnaker, 19801. The beliefs are
stable in the sense that an agent has perfect knowledge of his own beliefs according
to the intended semantics of L, and cannot infer any more atoms of the form LO or
-"LO.

Although an ideal agent's beliefs will be a stable set containing his beliefs, not
just any such bet will do. For example, if the premises are {p V q}, one stable set
is {p V q,p, Lp, L(p V q),. ..-. This set contains the belief p, which is unwarranted
by the premises. The constraint of making the belief set stable guarantees that the
beliefs will be introspectively complete, but it does not constrain them to be soundly
based on the premises. Moore recognized this situation in formulated autoepistemic
logic; his solution was to ground the belief set by making every element derivable
from the premises and some assumptions about beliefs. The reason he needed a
set of assumptions is that negative introspective atoms (of the form -,LO) are not
soundly derivable from the premises alone. For example, consider the premise set
{-,Lp D q,p V q}. We would like to conclude -,Lp, since there is no reasonable way
of coming to believe p. But an inference rule that would allow us to conclude -,Lp
would have to take into account all possible derivations, including the results of its
own conclusion. This type of circular reasoning can be dealt with by adding a set
of assumptions about what we expect not to believe, and checking at the end of all
derivations that these assumptions axe still valid.

In autoepistemic logic, a belief set T is called grounded in premises A if all of its
members are tautological consequences of A U LTo U -,LTo, where LTo = {LO 1 0 E
T nf 41, and -,LTo = {-,LO I 0 E 4o and 4 V T}. This concept of groundedness is
fairly weak, since it relies not only on assumptions about what isn't believed (-,LTo),
but also about what is (LTo). In this paper we consider belief sets that use only
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assumptions -LTo in forming the belief set T. Everything else in the belief set will
follow deductively (and monotonically) from the premises A and the assumptions
-'LT0 . In some sense "LT-o * the minimal set of assumptions that we can use in
this manner; for every smaller set, we have to resort to nonmonotonic rules, such as
negation-as-failure [Lloyd, 1987], in order to form a stable set. For this reason we call
a belief set grounded in A and -'LTo ideally grounded.

Ideally grounded logics axe similar to the modal nonmonotonic logics defined in
[McDermott, 1982; Shvarts, 1990; Marek et al., 1991], but allow an agent to make
fewer assumptions about his own beliefs. The main difference is that ideally grounded
logics are more grounded in the premises than modal nonmonotonic logics, and in
general will have fewer unmotivated extensions.

In the rest of this chapter we explore ideally grounded belief sets from the perspec-
tive of introspective reflection principles. We are able to characterize the minimal set
of principles that will yield a stable set of beliefs, and also (once nested belief oper-
ators are introduced) the maximal ones. The resultant family of introspective logics
fills in a hierarchy between strongly and moderately grounded autoepistemic logic
[Konolige, 1988], and suggests that the moderately grounded fixed-point is the best
system for an ideal agent with perfect awareness of his beliefs.

3.2 Minimal Ideal Introspection

In this and the following section we restrict the language to f1, containing no nesting
of the belief operator. This presents a simple system to explore the consequences of
ideal introspection.

An ideally grounded introspective agent determines his belief set using the follow-
ing fixed-point equation:

T ={ A U-'LTo F-s (3.2)

where S is some system of inference rules. Any set T that satisfies this equation will
be called an ideally grounded extension of A. The set To = T n to is the kernel of T.

In the remainder of this section we consider the minimal set of rules S that guar-
antees a stable belief set for T. Because a stable set is closed under tautological
consequence, the rules S must contain a complete set of propositional rules. In ad-
dition, whenever 0 is in the belief set, we want to infer LO. The following two rules
fulfill these conditions.

Rule Taut. From the finite set of sentences X infer 4, if 4 is a tautological conse-
quence of X.

Rule Reflective Up. From 0 infer LO, if 4 E Lo.
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PROPOSITION 3.2.1 Let RN be the rules Taut and Reflective Up. Every RN-extension
of A is a Co stable set containing A.

PROPOSITION 3.2.2 If for every set A C 4j, the S-extension of A is an C1 stable
set containing A, then Taut and Reflective Up are admissible rules of S.

These two propositions show that the rules RN form the minimal logic for ideally
grounded agents, in the sense that RN extensions produce stable belief sets, and they
must be included in any system that produces such sets. Further, every RN extension
of A is minimal for A: there is no stable set S containing A such that So C To.

PROPOSITION 3.2.3 Every RN extension of A is a minimal stable set for A.

Thus, we have shown that two simple rules, Taut and Reflective Up, are sufficient
to guarantee an ideal introspective agent.

3.3 Groundedness, Autoepistemic and Default Logic

In this section we relate ideally grounded extensions to their close relatives, default
logic and AE extensions. Ideal groundedness is somewhat weaker than default logic
and strongly grounded AE extensions, but stronger than moderately grounded ones.

Simple as it is, the system RN is almost equivalent to default logic [Reiter, 1980].
It is not quite as strongly grounded as the latter; while there exists a translation from
DL to RN that preserves extensions, the inverse translation fails in a few cases.

We will assume that the reader is familiar with DL. A default theory (W, D)
consists of a set of first-order sentences W and a set of defaults D of the form

a :01 #/y

Here only the propositional case will be considered, but extending the results to
first-order languages is straightforward (as long as no quantifying-in is allowed, e.g.,
sentences of the form Qx.L4(x)).

To get a translation to RN, simply take W and add a translation of each default
rule, as follows:

A = W U f{L(a A a) A -L-fl, i- D -t I a : fi,""/-Y E D}. (3.3)

Note the form of the first modal atom: L(a A a), rather than La. Since the beliefs
of an agent are closed under tautological consequence, this amounts to the same
constraint on beliefs; however, the difference is important for finding extensions, as
will be made clear shortly.
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PROPOSITION 3.3.1 U is the kernel of an RN extension of A iff it is a DL extension
of (W, D).

This is a simple translation of DL into a minimal AE logic. It is the same as the
translation in [Konolige, 1988] (except for the use of a A a instead of a), but there
it was necessary to limit the extensions of the AE logic to strongly grounded ones, a
syntactic method based on the form of the premises. No such method is needed here.

To get autoepistemic logic, we need to include more assumptions about beliefs in
the fixed point equation 3.2. Let us define open RN extensions as solutions of the
equation

T={ A U LTOU-'LTOI--RN 1, (3.4)

where LTo is the set {LO 1 0 E To}. Actually, the presence of the Up rule is redundant
here. From results in [Konolige, 1988], it is easy to show the following proposition.

PROPOSITION 3.3.2 T is an open RN extension of A iff it is the kernel of an AE
extension of A.

The kernel of an AE extension is just the part of the extension from Co. The kernel
completely determines the extension.

So the basic difference between AE and default logic is based on the groundedness
of the extensions, that is, AE logic lets an agent assume belief in a proposition a, and
use that assumption to derive the very same proposition as part of the final set of
beliefs. In default logic, all derivations must be ideally grounded, so that assumptions
are of the form -'Lo.

The circular reasoning possible in AE logic was noted in [Konolige, 1988], and
two increasingly stronger notions, moderate and strong groundedness, were defined
as a means of throwing out extensions that exhibit such reasoning. RN extensions
are related to these systems by the following diagram:

IAE strongly groundedi -- p- LRIexensions

(3.5)
AE moderately -3.E5

grounded

The arrows indicate inclusion of the logics: AE logic admits the most extensions, and
AE strongly grounded the fewest.
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3.4 Nested Belief

So far we have preferred to forego the complications of beliefs about beliefs, using
the language £C that contains no nesting of modal operators. This language and
its semantics can be extended in a straightforward way. Let C be the propositional
modal language formed from Co by the recursive addition of atoms of the form Lp,
with p E C.

The semantic equations for a stable set (3.1) are modified to take away the re-
striction of beliefs being in Co:

The premises are in r.
4' EPr LO E r (3.6)
o v r -_ LO E r

Any set from C that satisfies these conditions, and is closed under tautological con-
sequence, will be called a stable set for A (in contrast to £L-stable, which does not
consider nested modal atoms).

Consider a premise set A that is drawn from C1, as before. In every RN extension
of A there is complete knowledge of what facts are believed or disbelieved, i.e., LO'
or -'LO is present for every nonmodal 4. The addition of the nested modal atoms
should make no difference to this picture, except to reflect the presence of the belief
atoms in the correct way. So, for example, if La is in an RN extension S, then LLa
should be in the extension when we consider C; and similarly L-,La should be present
if -,La is not in S. This much is easily accomplished by removing the restriction on
Reflective Up, and giving it its usual name from modal logic.

Rule Necessitation. From 4 infer LO.

This rule will add positive modal atoms; but we need also to add negative ones. For
example, if La is in an extension, and the extension is consistent, then -"La is not
in it, and this fact should be reflected in the presence of -,L-,La. In fact we want
to infer -,Lp for every sentence p that will not be in the extension, given that we
have full knowledge of the belief atoms from Li. Suppose that there is a sentence
La V -,Lb V c that is not in S, where c is a nonmodal sentence. This implies that, for
stable S, -'La E S, Lb E S, and -,Lc E S. So from these latter sentences we should
infer -,L(La V -'Lb V c). This is what the following rule does.

Rule Fill. From Lai, -Lp%, -'L-y, and p D (Vi La• V V2 -,Li3 V -), infer -'Lp.

The system NRN consists of the rules Taut, Necessitation, and Fill. The basic
properties of NRN extensions are that they are minimal stable sets, the rules are
essential, and they are conservative extensions of RN fixed points.
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PROPOSITION 3.4.1 If for every set A C C, the S-extension of A is a stable set
containing A, then Taut, Necessitation, and Fill are admissible rules of S.

PROPOSITION 3.4.2 Every NRN extension of A is a stable set for A.

Extensions that are stable sets are also minimal, as for the nonnested language.

PROPOSITION 3.4.3 If the rules S are sound with respect to stable sets, and the
S-extension of A is a stable set, then it is a minimal stable set for A.

The nested extensions are conservative with respect to nonnested ones.

PROPOSITION 3.4.4 If A C £1, then the kernel of every RN extension is the kernel
of an NRN extension, and conversely, the kernel of every NRN extension is the
kernel of an RN extension.

Finally, the Fill rule is redundant in the presence of the K axiom schema.

PROPOSITION 3.4.5 The rule Fill is admissible in any system containing K, Taut
and Necessitation.

Because nested modal atoms are propositionally distinct from nonnested ones, it
is possible to derive new translations from default logic to sentences of L such that
all extensions are strongly grounded and hence equivalent to default logic extensions.
There are many ways to do this; all that is required is to translate from a : f•/ry to a
sentence in which a and /0 are put under different nestings of modal operators that
correspond to the single nesting semantics. For example, three such translations are:

a) LLa A -L-0 D -Y
b) La A --LL-,0 D - (3.7)

c) LQ A L--L-,I D -

3.5 Reflective Reasoning Principles

The systems RN and NRN are minimal rules that might be used by an agent rea-
soning about its own beliefs. They have the nice characteristic of giving minimal
stable sets, and so are somewhere between strongly and moderately grounded. But
are there other reflective reasoning principles that could be incorporated? In this
section we will give a partial answer to this question by examining several standard
modal axiomatic schemata, and showing how some of them are appropriate as general
reasoning principles, while others must be regarded as specific assumptions about the
relation of beliefs to the world.
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The most well-known modal schemata are the following.

K. L(Ob D 0) D (LO D LtP)
T. LODO

D. LO D-'L-0 (3.8)
4. LO D LLqS
5. -Lý D L--Lo

Different modal systems can be constructed by combining the different modal
schemata with the inference rules Taut and Necessitation. Using our previous def-
inition of inclusion, we show the following relations among the different versions of
S-extensions.

PROPOSITION 3.5.1 The following diagram gives all the inclusion relations of ide-
ally grounded eztensions based on the modal systems formed from the schemas
K, T, D, 4, and 5.

SG --- P K, RD (K,5N% 45~ W- -- 0'A

X4, \D4 Jr

S.................. .. ...... Ik .......... .............
T S4 - S5

The top half are systems whose extensions are all subsets of AE logic. SG stands
for strongly grounded AE extensions, and MG for moderately grounded. The min-
imal ideally grounded system is NRN, and the maximum is K45 or KD45, which
is equivalent to MG (see [Konolige, 19881). An ideal introspective agent would use
KD45 extensions, which we call ideal extensions. Note that the schema D does not
make any difference as far as ideally grounded extensions are concerned; in effect, the
agent cannot use reasoning about self-belief to detect an incoherence in his beliefs.

3.6 Conclusion

We have presented the minimal logic (NRN) that an ideal introspective agent should
use. It is minimal in the sense that the agent makes a minimal set of assumptions
about his own beliefs, and employs a minimal set of rules necessary to guarantee that
his beliefs are stable. An ideal introspective reasoner may enjoy more powerful rules
of introspection, for example the modal schemas 4 and 5, but he should keep the
assumptions about his beliefs to a minimum. The schema T is not a sound axiom
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for an introspective agent, but can be used to characterize a contingent connection
between beliefs and the world.

The concept of ideally grounded extensions first appeared in [Konolige, 1988],
where the system KD45 was presented and proven equivalent to moderately grounded
AE extensions.' Fixpoints of the systems T, S4 and S5 were introduced under the
name of nonmonotonic ground logics in [Tiomkin and Kaminski, 1990], and it was
shown that the S5 logic was nondegenerate and consistent, i.e., does not reduce to
monotonic S5, and always has an extension.

Ideally grounded logic might be employed in an analysis of metatheoretic sys-
tems, such as the DEMO and SOLVE predicates in logic programming [Bowen and
Kowalski, 1982; Costantini, 1990]. Using a predicate to represent provability can
cause problems with syntax and consistency (see [des Rivieres and Levesque, 1986]
for some comments). Instead, this research suggests using a modal operator, and
defining a theory by the fixed point definition (3.2). Some appropriate notion of
negation-as-failure would be used to generate the assumptions, and the rest of the
fixed point could be calculated using the reflection rules.

'A slightly different fixed-point was used because of a technical difference in the form of monotonic
inference in modal systems.
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Chapter 4

Representationalist Theory of
Intention

This section is based on research by Kurt Konolige and Martha Pollack.

4.1 Introduction

Formalizations of cognitive state that include intentions and beliefs have appeared in
the recent literature [Cohen and Levesque, 1990; Rao and Georgeff, 1991; Shoham,
1990; Konolige and Pollack, 19891. With the exception of the work presented here,
these have all employed normal modal logics (NMLs), that is, logics in which the
semantics of the modal operators is defined by accessibility relations over possible
worlds. This is not surprising, since NMLs have proven to be a powerful tool for
modeling the cognitive attitudes of belief and knowledge. However, we argue that
intention and belief are very different beasts, and that NMLs are ill-suited to a formal
theory of intention.

We therefore present an alternative model of intention, one that is representation-
alist, in the sense that its semantic objects provide a more direct representation of
cognitive state of the intending agent. We argue that this approach results in a much
simpler model of intention than does the use of an NML, and that, moreover, it al-
lows us to capture interesting properties of intention that have not been addressed in
previous work. Further, the relation between belief and intention is mediated by the
fundamental structure of the semantics, and is independent of any particular choice
for temporal operators or theory of action. This gives us a very direct, simple, and se-
mantically motivated theory, and one that can be conjoined with whatever temporal
theory is appropriate for a given task.

NMLs have been widely and successfully used in the formalization of belief. It
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PoIble wo"ds W

Figure 4.1: A Venn diagram of two scenarios.

is largely as a result of this success that researchers have adopted them in building
models of intention. However, we argue that these logics are inappropriate to models
of intention:

"* The semantic rule for normal modal operators is the wrong interpretation for
intention. This rule leads to the confusion of an intention to do 4, with an inten-
tion to do any logical consequence of 4, called the side-effect problem [Bratman,
19871. A simple and intuitively justifiable change in the semantic rule makes
intention side-effect free (and nonnormal).

"* Normal modal logics do not provide a means of relating intentions to one an-
other. Relations among intentions are necessary to describe the means-end
connection between intentions.

These problems do not mean we have to abandon possible worlds. In fact, with the
right semantics, possible worlds are an intuitively satisfying way of representing future
possibility and intention for an agent. We note that intentions divide the possible
futures into those that the agent wants or prefers, and those he does not. Consider
the diagram of Figure 4.1. The rectangle represents the set of possible worlds W.
The scenario for a proposition a is the set of worlds in W that make a true: the
shaded area in the diagram. An agent that has a as an intention will be content if the
actual world is any one of those in the shaded area, and will be unhappy if it is any
unshaded one. The division between wanted and unwanted worlds is the important
concept behind scenarios. For example, consider another proposition b that is implied
by a (for concreteness, take a = "I get my tooth filled," and b = "I feel pain.") If we
just look at interpretations within the shaded area, a and b both hold, and so cannot
be distinguished. But the complement of these two propositions is different. A world
in the area -a, b, in which the agent feels pain but does not have his tooth pulled, is
an acceptable world for the intention b, but not for a. So the interpretation rule for
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intention must take into account the complement of the intended worlds. As we will
see in Section 4.2, this makes intention a nonnormal modal operator. It also makes
it side-effect, abstraction, and conjunction free, whether we choose realism or weak
realism.

The representationalist part of the model comes in representing the mental state
of the agent using scenarios. Cognitive structures, containing elements representing
intentions and the relationship among intentions, are used for this purpose.

4.2 Cognitive Structures

Our model of intention will have two components: possible worlds that represent
possible future courses of events, and cognitive structures, a representation of the
mental state components of an agent. We introduce complications of the model in
successive sections. To begin, we define the simplest model, a static representation
of primary or "top-level" intentions. Primary intentions do not depend on any other
intentions that the agent currently has.

The concept of intention is intimately connected with choosing among courses
of future action. In the model, courses of action are represented by possible worlds.
Each possible world is a complete history, specifying states of the world at all instants
of time. We assume there is a distinguished moment now in all worlds that is the
evaluation point for statements.

To talk about contingent and necessary facts, we use the modal operators 0 and
0. The possibility operator 0 expresses the existence of a world with a given property.
00 says that there is a world (among W) for which 4 is true. 0 is used to specify
the background of physically possible worlds under which reasoning about intention
takes place, and will be important in describing the structure of a given domain. The
necessity operator 04) is defined as -0-0.

A key definition is the concept of scenario.

DEFINITION 4.2.1 Let W be a set of possible worlds, and 4 any sentence of L. A
scenario for 4) is the set

Mo= wEWIw,WI=0).

A scenario for 4 identifies 0 with the subset of W that make 4 true.
A cognitive structure consists of the background set of worlds, and the beliefs and

intentions of an agent.

DEFINITION 4.2.2 A cognitive structure is a tuple (W, E,,I) consisting of a set of
possible worlds W, a subset of W (E, the beliefs of the agent) and a set of
scenarios over W (1, the intentions of the agent).

29



We extend the language by adding the modal operators B for belief and I for in-
tentions. The beliefs of an agent are taken to be the sentences true in all worlds of
E. For simplicity, we often write E as a set of sentences of ED, so that M,; is the
corresponding possible worlds set.

The beliefs of an agent are always possible, that is, they are a subset of the possible
worlds. This also means that an agent cannot be wrong about necessary truths. A
more complicated theory would distinguish an agent's beliefs about what is possible
from what is actually possible. The key concept is that intentions are represented
with respect to a background of beliefs about possible courses of events (represented
by O), as well as beliefs about contingent facts (represented by B). The following
theorems are key facts about belief:

B(O) D 0> (4.1)

Of course, beliefs about contingent facts can still be false, since the real world does
not have to be among the believed ones. The B operator represents all futures the
agent believes might occur, ;ncluding those in which he performs various actions or
those in which he does nothing. The beliefs form a background of all the possibilities
among which the agent can choose by acting in particular ways.

The third component of a cognitive structure for an agent, an intention structure,
is a set of scenarios Mo. Intuitively, an agent's intention structure will include one
scenario for each of his primary intentions. We write 1 as a set of sentences of £o,
where each sentence 0 stands for its scenario Mo. 1(0) is true just in case 4 is
equivalent to some proposition ti E 21, given the background structure W.

PROPOSITION 4.2.1 For any structure (W, TI),

(W, ,2) ýI 1(0) iff 3, E 1. W O(-t).

The Ioperator is true precisely of the individual top-level intentions the agent has.
It is not subject to closure under logical consequence or under the agent's beliefs. To
see this, consider the cognitive structure (W, E, {a)), i.e., the agent has the single
intention to perform a. Assume that a logically implies b, but not the converse, i.e.,

W I- O(a D b) A 0(b A a).

Then M. 0  Mb, because there is a world in which b is true but a is not. From the
semantics of I, we have

(W, E, { a)) fr 1(a) A -'1(b)

This shows that I is not closed with respect to valid consequence.
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Possible Worlds W

"4,-b

Figure 4.2: A Venn diagram of belief and intention.

4.2.1 Rationality Constraints: Intention and Belief

So far we have not related the agent's intentions to his beliefs. Consider the diagram
of Figure 4.2, for which the cognitive structure is (W, E, {a, b}). The agent's two
intentions are jointly possible, since the overlapping area contains at least one world
in which they both hold. However, based on the contingent facts of the situation, the
agent does not believe that they will actually occur, since his beliefs, given by the
set E, fall outside the overlap area. A rational agent will not form intentions that
he does not believe can be jointly executed. Further, intentions should be nontrivial,
in the sense that the agent intending 0 should not believe that 4' will occur without
the intervening action of the agent. To enforce rationality, we define the following
conditions on cognitive structures.

DEFINITION 4.2.3 A cognitive structure (W, E,1) is admissible if it is achievable:

3w E E. V' E I. w E M0

and nontrivial:

V E .7.3w E E.wVM

This condition leads immediately to the following consequences.
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PROPOSITION 4.2.2 These sentences are valid in all admissible structures.

-,I(a A -,a) Consistency
I(a) A 1(b) D 0(a A b) Joint Consistency

I'(a) D Oa
I*(a) D BOa Realism
,(a) D -,B(-,a) Epistemic Consistency
1(a) A 1(b) D -"B(-,(a A b)) Joint Epistemic Consistency

I*(a) D -- a
1(a) D -B(a) A -"B(-,a) Epistemic Indeterminacy

A rational agent, characterized by achievable structures, does not believe that his joint
intentions represent an impossible situation: this is the theorem of Joint Epistemic
Consistency. This theorem can be stated using either reading of intention.

In addition, the nontriviality condition on models means that the agent does not
believe that any one of his intentions will take place without his efforts (Epistemic
Indeterminacy). Recall that the B operator represents all futures the agent believes
might occur, including those in which he performs various actions or does nothing.
The beliefs form a background of all the possibilities among which the agent can
choose by acting in particular ways. If in all these worlds a fact 0 obtains, it does no
good for an agent to form an intention to achieve 0, even if it is an action of the agent,
because it will occur without any choice on the part of the agent. So, for example, if
the agent believes he will be forced to act at some future point, perhaps involuntarily
(e.g., by sneezing), it is not rational for the agent to form an intention to do that.

4.2.2 Relative Intentions

One of the primary characteristics of intentions is that they are structures: agents
often form intentions relative to pre-existing intentions. That is, they "elaborate"
their existing plans. A plan can be elaborated in various ways. For instance, a plan
that includes an action that is not directly executable can be elaborated by specifying
a particular way of carrying out that action; a plan that includes a set of actions can
be elaborated by imposing a temporal order on the members of the set; and a plan
that includes an action involving objects whose identities are so far underspecified
can be elaborated by fixing the identities of one or more of the objects. As Bratman
[Bratman, 1987, p.291 notes, "[p]lans concerning ends embed plans concerning means
and preliminary steps; and more general intentions ... embed more specific ones."
The distinction between these two kinds of embedding recurs in the Al literature.
For instance, Kautz [Kautz, 1990] identifies two relations: (1) decomposition, which
relates a plan to another plan that constitutes a way of carrying it out (means and
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preliminary steps), and (2) abstraction, which relates a specific plan to a more general
one that subsumes it. It is useful to have a term to refer to the inverse relation to
abstraction: we shall speak of this as specialization.

Both kinds of elaboration are represented in the cognitive structure by a graph
among intentions. The graph represents the means-ends structure of agent intentions.
For example, suppose the agent intends to do a by doing b and c. Then the cognitive
structure contains the graph fragment Mb, M, -- M.. As usual, in the cognitive
structure we let the propositions stand for their associated scenarios.

DEFINITION 4.2.4 An elaborated cognitive structure consists of a cognitive struc-
ture and an embedding graph --+ among intentions: (W, E,2", -+). The graph is
acyclic and rooted in the primary intentions.

Remarks. The reason we need both primary intentions and the graph structure is
that, while every root of the graph must be a primary intention, primary intentions
can also serve as subordinate intentions. Consider the masochistic agent with a tooth
cavity: he both intends to feel pain, and intends to get his tooth filled. His cognitive
structure would be:

I{W, {a D b}, {a,b}, a --+ b}.

Also note that a scenario of the graph may serve to elaborate more than one intention;
Pollack (Pollack, 19911 calls this overloading.

The embedding graph --- is the most strongly representationalist feature of the
model. It represents the structure of intentions in a direct way, by means of a relation
among the relevant scenarios. A normal modal logic is incapable of this, because its
accessibility relation goes from a single world (rather than a scenario) to a set of
possible worlds.

As with primary intentions, we can specify suitable rationality constraints for
subsidiary intentions. The key constraint has to do with the means-end relation. An
agent should believe that if the elaboration is achieved, the original intention will be
also. Consider the diagram of Figure 4.3, in which the agent has the intention to
achieve a by achieving b; for concreteness, take the example of calling the telephone
operator by dialing 0. There can be possible worlds in which b does not lead to a: for
example, in using the internal phone system of a company. The correct rationality
condition for an agent is that he believe, in the particular situation at hand, that
achieving b will achieve a. This is represented by the set E of belief worlds, in which
b D a holds. We call a model embedded if it satisfies this constraint on belief and
intention structure.

While the embedding graph semantics is simple, it leads to interesting interactions
in the statics of intention and belief. For example, in plan recognition it can be used
to determine if a recognized plan is well-formed. It is also critical to the theory of
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Figure 4.3: Means-ends intentions and belief.

the dynamics of intention and belief. We have a preliminary theory of this dynamics
expressed as a default system.

4.3 Conclusion

We have concentrated on the static relation between intention and belief, and shown
how the relationship between these two can be represented simply by an appropriate
semantics. The static formalism is useful in a task such as plan recognition, in which
one agent must determine the mental state of another by using partial information.

More complex applications demand a dynamic theory, which is really a theory of
belief and intention revision. The formalism of cognitive structures can be extended
readily to time-varying mental states, by adding a state index to the model. However,
the theory of revision is likely to be complicated, even more so than current belief
revision models [Girdenfors and Makinson, 1990], and will probably involve elements
of default reasoning.
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Chapter 5

A Theory of Causal Reasoning

5.1 Causation

Knowledge of causation is an important part of commonsense reasoning. We use
cause-and-effect analysis to understand everything from why we caught the flu to how
to make a video recorder save our favorite TV show. If causation is so ubiquitous in
reasoning about and affecting everyday events, it might also be useful to employ thie
concept in a formal theory of diagnosis. Surprisingly, the best-known such theory,
model-based diagnosis [Reiter, 1987), does not. We argue in this paper that importing
a formal notion of causation into model-based diagnosis leads to a better theory,
solving some significant representational and inference problems.

What benefits can an explicit encoding of causation bring to diagnostic theories?
There are at least three possible areas:

* Problem structuring

e Explanations

I Computation

The first, problem structure, is the most important, and underlies the other two. It
is clear that in everyday reasoning we use the concept of cause and effect to structure
our interpretations of the observations we make, to understand how events occur and
how we can affect them. This representational issue is the main focus of the paper,
and just below we present an example motivating our viewpoint.

The second item, explanations, is important whenever a diagnostic system must
communicate its results to an end user. In answering questions about how a conclusion
was reached, it is not acceptable for a system to state:

X is 13 and Y was 12 and the system equation predicts that Z will be 18.
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This kind of "explanation" will not be helpful: it does not give a user insight into the
domain in terms that he is familiar with, i.e., causal relations.

Finally, there are computational issues. By giving a structure to the domain, one
that usually has a strong acyclic bias, causal relations can focus the computational
task. Some examples of the benefits that can result are in the theory of Bayes nets
[Pearl, 19881 and in using causal approximations to physical theories [Nayak, 1992a;

Nayak, 1992b]. Although we give some computational methods at the end of this
paper, these are mostly to touch base with previous work in model-based diagnosis,
and we have not yet explored the computational ramifications of the theory.

A causal default theory should address two tasks: prediction and explanation.
Prediction is the process of deriving the course of events from initial conditions.
Prediction is useful in many ways, for example, in planning one's actions. What
happens if I don't pay my telephone bill on time? Knowing the consequences of this
action can help decide whether to perform it or not. Another way prediction is used
is to set up expectations in testing. An electronics engineer may apply an input to a
circuit, expecting it to generate a certain output if it is working correctly.

The second task is explanation: from observed effects, infer what could have
caused that effect. Typical here are applications such as plan recognition and di-
agnosis of complex systems. In plan recognition, one tries to infer the intentions of
someone through observation of her actions: Why did the train conductor ask if I had
a passport? Understanding the relation of actions to intentions is important in any
cooperative task, and especially in communication [Cohen et al., 1990]. Diagnosis is
a similar kind of task, except that one is trying to figure out possible explanations
for a system not behaving as expected: Why does the copier always jam when I put
in transparency paper? Finding the answer to this question can help in fixing the
problem.

We have developed a theory that integrates causal and default reasoning within a
first-order framework. Both the normal function of a system, and full or partial infor-
mation about its fault modes can be represented. The main structure of the theory
is a default causal net (DCN) representing the causal connections among proposi-
tions in the domain. Default causal nets, we claim, offer significant representational
advantages over current formal model-based diagnosis theories.

"* DCNs distinguish between the strong explanation of the cause of an observation
versus the weaker explanation of an excuse for the consistency of the observa-
tion.

"* Partial fault models are allowed; information about fault modes can lead to
stronger explanations, but complete information is not required.

"* Preferences among explanations based on causal relations in DCNs can yield
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better diagnoses than current model-based theories.

e Because it is based on abductive reasoning, DCNs admit causal influences that
are neither normal or abnormal, but neutral.

Some of these advantages accrue because DCNs use an abductive approach to ex-
planation in diagnosis; others, especially the third, are a result of incorporating an
explicit causal relation.

5.2 Default Causal Nets

Default causal nets (DCNs) are a formal structure that encode the concepts of causa-
tion, correlation, and defaults. They consist of a causal theory R, a definitional theory
D, and a correlation or integrity theory I. In addition there are distinguished sets of
propositions C (the primitive causes) and N (the normal conditions). The term "net"
is used in analogy with Bayesian nets, because the main structuring concept is the
causal relation embodied in R.

DEFINITION 5.2.1 (DEFAULT CAUSAL NET)
A default causal net is a tuple (R, D, I, C, N), where R is a Horn theory, D and
I are first-order theories, and C and N are disjoint sets of atoms.

5.2.1 Causation

Formally, we understand causation to be a primitive relation among propositions. By
"primitive" we mean that, as far as DCNs are concerned, the causation relation is part
of the parameterization of the net, and is not derived from any other concepts. This
is unlike the approach of Shoham [Shoham, 1987], for example, in which a theory
of causation is developed by reducing it to other concepts. Our approach leaves
unanswered questions about how to identify causation in a given domain, the relation
of causation to time, and various other difficulties about the nature and properties of
causation.

To represent the causal relation, we use a definite clause theory R over a first-order
language E. This theory consists of a set of implications

a, . . . an : b .

where each of a, and b is a ground atom of C. If A is a set of propositions, then we
say that an atom b is caused by A if there is a proof of b from A in R; we write this
as A FR b. A is a minimal cause for b if there is no other cause A' for b such that
A'C A.
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Figure 5.1: Three bulbs with a switch

EXAMPLE 5.2.1 A variation of the 3-bulb example is diagrammed in Figure 5.1.
There is a switch that can be either open or closed. For each of the other
components ci, the proposition ok(ci) means that the component is working,
and ab(ci) that it is broken. The theory R is:

closed, ok(s), ok(wl), ok(bi) D on(b1)

closed, ok(s), ok(wj), ok(w 2), ok(b2) D on(b 2)

closed, ok(s), ok(wi), ok(w 2), ok(w3 ), ok(b3 ) D on(b3 ) (5.1)

open D off (bi)

open D off (b2)

We have not listed any fault models, although we could. Here is a partial fault
model that we will use in some examples.

ab(bi) D off(b1 ) ab(b2 ) D off(bk)

ab(w1 ) D off (b1 ) ab(w2) D off (b2)

The partial fault model is also part of the relation R, since it represents cau-
sation in the abnormal functioning of the device. The primitive causes C are

{open, closed, ab(ci)}.

Note that there can be causes other than the normal or abnormal functioning of
a component. This is useful in representing neutral situations, e.g., the switch is not

normally either closed or open, but can be hypothesized as either in order to explain
the observations. The propositions ok(x) are not listed as primitive causes; they are

normal conditions, explained below.
The important part of the causal relation is that it captures the functional depen-

dence of the domain variables. If we want to turn b1 on, then we can close the switch
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and make sure that s, wl, and b1 are working correctly. On the other hand, we cannot
make b, be on as a means of causing the switch to close. Of course, if we observe b,
to be on, then we can infer that the switch is closed; but it is not possible to plan to
change the position of the switch by the primitive action of making the bulb be on.
This illustrates the difference between a causal relation and a merely correlational
one. Unlike material implication, the causal relation is asymmetric and does not
contrapose: given that c causes d, it is not necessarily the case that -'d causes -'c.
Deduction in a definite clause theory is one way to represent the asymmetric causal
relation.

5.2.2 Definitions and Correlations

Besides causation, there are other types of relations connecting propositions. Defini-
tional information relates propositions that have defined relations within a domain,
e.g., "a 40-watt bulb is a type of bulb" or "abnormal is the opposite of normal."
Definitions can obviously interact with causation, since from "a broken 40-watt bulb
caused the problem" we can infer "a broken bulb caused the problem." For our pur-
poses, we limit definitions to information about tomplementary propositions. Defi-
nitional relations are represented by a first-order theory D; for the bulbs example of
Figure 5.1, it contains the propositions:

open -- closed
abc)_o~j (5.3)
on( bi ) ="off ( bi )

If p F-D -'q, then we say that q is the complement of p, and write it as p.
Information about co-occurrences is another form of non-causal information in

a domain, e.g., "Whenever I clean my car it rains." Correlations can be used to
make predictions, but do not contribute to causal explanations. Correlations are
represented by a first-order theory I (for integrity theory). All causation and definition
relations are also correlational. We enforce this restriction by demanding that R C I
and D C I.

EXAMPLE 5.2.2 Continuing the bulbs example, suppose we know that whenever b,
is off and is not broken, the other bulbs must be off, too. We represent this as

off (b1) A ok(bi) D off(b2) A off (b3) E I (5.4)

Correlations may come from many different sources. As in the case of this example,
there may be underlying but unknown causes that link several propositions. Or we
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may have experiential knowledge that is the converse of causation: whenever the road
is wet, it normally rained the previous night.

A proposition q is correlationally inferred from a set of propositions A if it follows
logically from the correlational theory and A; we write A h-l q. For example, off(b2 )

is inferred from A = {ok(bi), off (b1)} in the above example, but it is not caused by
A. If A causes q, then it also infers q, since R C I. Note that, unlike the case with
the causal relation, the material conditional can be used for "backwards" inference,
e.g., if on(b2) is true, we can infer that one of ab(bi) or on(b i ) is true by using the
contrapositive of Equation 5.4.

5.2.3 Normal Conditions

Normal conditions are propositions that are normally assumed to hold. They gen-
erally represent either the normal functioning of a component, or a complex set of
conditions, e.g., "if the key is turned and everything is normal, the car will start."
Formally, normal conditions are a set of ground atoms N that are not primitive causes.
Primitive causes are hypotheses that incur a cost to assume; normal conditions are
"free" and assumed to hold by default.

EXAMPLE 5.2.3 Continuing the bulbs example, we let the set of normal conditions
N = {ok(ci)}. In this case, the normal conditions just describe the correct
functioning of the components. We can define other types of normal conditions,
for example to relate causation among abnormal components. Suppose that
normally when b, is on, it causes b2 to fail. We would write:

n A on(b1 ) D ab(b2 ) (5.5)

as part of the causal theory R, where n E N is a new proposition reflecting a
normal causal relation between b, and b2 . As we will show later, such causal
relations can be used to specify priorities among explanations.

Identifying normal conditions is the key to default reasoning in causal theories.
We seek to explain a set of observations by hypothesizing causes that are as "normal"
as possible, that is, conflict with the fewest normal conditions.

It is helpful to view the causal relation and normal conditions as a directed graph.
For example, the normal functioning of the bulbs with the switch closed (Equation 5.1)
and the failure mode just given (Equation 5.5) can be diagrammed as in Figure 5.2.
The arrows show the causal connections among propositions, annotated with their
normal conditions (for simplicity we have omitted some irrelevant normal conditions).
The circled arrow indicates that bulb 1 being on is the cause of an abnormal condition
with bulb 2. The causal directionality is clear from the diagram.
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Figure 5.2: Causal directionality

The choice of what conditions are assumed to be "normal" or part of the causal
background is an important part of the information provided by the application devel-
oper. Depending on the task and the level of expertise of the developer, very different
choices could be made, even in the same domain. For example, a typical driver might
infer that turning the key causes the car to start, given the normal condition that the
car is ok. A car mechanic might have a more detailed causal view: turning the key
and having a charged battery causes the car to start, assuming the starter motor is
working correctly.

5.2.4 Explanations

We now have all of the elements necessary to develop the inference operation of
explanation within DCNs.

DEFINITION 5.2.2 (EXPLANATION)

An explanation for an observation set 0 is a set of causes and normal conditions
AC CUN such that AR-R 0 and AUO VI I.

EXAMPLE 5.2.4 To illustrate the concept of explanation, we consider the bulbs the-
ory containing the normal causal rules (5.1) together with the fault model (5.2).
The fault model is necessary to provide interesting explanations of nonnormal
behavior. Suppose we make the observation that bulb b, is not lit: off(bl).
There are several explanations for this proposition.

open, ok(s), ok(51 ), ok(w1 )

closed, ok(s), ab(bi)

etc.
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There are usually many explanations for a given observation set, and we seek intu-
itively preferred explanations. To find these, we filter all explanations by a two-step
process.

1. Normal explanation: those explanations that satisfy a maximal set of normal
conditions.

2. Ideal explanation: normal explanations that have a minimal number of primitive
causes.

The concept of a normal explanation is complicated by the presence of causation.
An abnormal condition may be caused by the explanation; when this happens, we
say that the normal condition is exempted. A normal explanation should consistently
either include or exempt as many normal conditions as possible. Here we are using the
concept of causation to structure the defaults. If a normal condition is not contained in
an explanation, it counts against the explanation, unless the corresponding abnormal
condition is exempted.

DEFINITION 5.2.3 (ADJUNCT)
Let A be an explanation for observation set 0. The adjunct of A is a set of
normal conditions defined as follows.

*If the complement - of a normal condition x is in A, then x is in the
adjunct.

elf a normal condition x is not in A, and A V/R 7, then x is in the adjunct.

A normal explanation for 0 is one whose adjunct does not strictly contain the
adjunct of any other explanation for 0. An ideal explanation is a normal one
that is subset-minimal in the primitive causes.

EXAMPLE 5.2.5 As in the previous example, consider the bulbs theory (5.1) to-
gether with the fault model (5.2). Again, if we make the observation that bulb
b, is off, we have several candidates for normal explanations:

Explanation Adjunct

ok(s),open, ok(w 1),ok(bi)... none

ok(s), ab(w1 ), ok(b1) .-. . ok(wi)

ok(s), ok(wl), ab(b) ... ok(b1 )

Of these, the minimal adjunct is the first. This is the normal and ideal expla-
nation of off(bl): the switch is open, and all components are normal.
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This example illustrates one property of normal explanations: as many normal con-
ditions are assumed to hold as possible. The switch can be either open or closed; if
we assume that it is open, then we have an explanation for b, being off that is consis-
tent with the normal functioning of the circuit. Any other explanation will force us
to assume that some component is functioning abnormally. So, normal explanations
consist of a set of primitive causes that explain the observations, and at the same
time respect our ideas about what normally occurs as much as possible.

In this example, there were no interesting causal relations between normal condi-
tions. In the definition of adjunct, we used the principle of causal exemption: if an
abnormal condition is caused by the hypothesized explanation, then it is exempted
from consideration in finding the "most normal" explanation. The following example
illustrates this point.

EXAMPLE 5.2.6 Consider the same fault model as in Example 5.2.5 with an initial
condition closed and the additional causal rule (5.5): nAon(bi) D ab(b2). There
are several candidates for normal explanations of {off(b2)}:

Explanation Adjunct

n, ok(s), ok(wl), ok(bi), ok(w 2) ... none

n, ok(s),ok(wi),ok(bi),ab(w2)... ok(w 2)
ok(s), ok(wi), ok(bI), ok(w2), ab(b2) ... ok(62), n

etc.

Of these, the first is the only normal explanation, and hence ideal. The reason
it has an empty adjunct is that the normal conditions and closed cause on(b1 ),
which in turn causes ab(b2), exempting the normal condition ok(b2). Every
other explanation violates at least one normal condition without exempting it.
This makes intuitive sense: if the switch is closed, we expect b, to be on, causing
b2 to be broken and off.

This example illustrates how directionality in the causal relation is important in
producing causal preferences among explanations. Referring back to Figure (5.2), it
is easy to see from following the causal arrows that closed, ok(bk) and n are a cause
of ab(b2). On the other hand, closed and ok(b2) are inconsistent with n and ok(b1 ),
but they do not cause the complement of either of these normal conditions.

5.2.5 Other Approaches to Explanation

Although we have concentrated on the application of DCNs to diagnosis, they pro-
vide a general framework for representing causation and explanation. Causation can
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be used as a unifying concept to understand various perspectives on diagnosis: ex-
cusing vs. explaining observations, correlation vs. causation, and the integration of
normal conditions with explanatory causes. Although many of these issues have been
dealt with separately in the literature, there have been few attempts to draw them
together into a single framework, and the issues are often obscured by the formal or
computational paradigm. There are many formal nonmonotonic systems that pro-
vide similar capabilities, although they are not phrased in terms of causation, e.g.,
Poole's THEORIST [Poole, 1988]. DCNs are distinguished by providing a coherent
account of causation, correlation, and default conditions. Perhaps the closest system
is Geffner's theory of causal and conditional reasoning [Geffner, 1989], which also
takes causation as a primitive concept, and ties together explanation, defaults, and
causation. He provides a complex but plausible formal account of these concepts,
using a modal expression Cca to represent "a is caused." Although the formalisms
differ, there are many points of similarity between this work and his. Perhaps the
major difference is that the roots of DCNs are default logic and abductive inference,
and thus there are natural computational methods using the ATMS.

A good test of the DCN framework is the application to reasoning about events.
We have started this task, and it appears that the problems of causation, explanation,
and prediction in an event calculus can be treated within the DCN framework. The
approach is similar to that of Shanahan [Shanahan, 19891, but the formal machinery
is more general, and includes causation.

5.3 Some Remarks about Causation

Perhaps the weakest point of the DCN approach is that the theory of causation is
not well developed. Since causation is treated as a proof-theoretic concept, there are
some obvious problems (or, one might say opportunities) that arise. We discuss some
of these here; a more detailed treatment can be found in [Konolige, 19911.

First, there is a deliberate sloppiness about stating propositions in the causal rela-
tion. Most of the ones used in this paper are statements about particular properties,
e.g., the switch is closed or the light is on. But causation also involves events: "clos-
ing the switch caused the light to go on." We are trying to be as noncommittal as
possible about the ontology of events and propositions, whether states of the world
can be allowed as causes, how to specify the time of events, and so on. Any consistent
defensible set of choices will do.

The second point is that a definite clause of R must specify all and only the
propositions governing an effect. Closing the switch turns on the bulbs only if they
are ok and the wires are intact. Of course, in any real-world situation there will be
an inordinate number of such conditions, so any default causal theory will be relative
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to a set of background assumptions that do not enter into the theory. The choice of
these assumptions is conventional.

It is important that only the relevant propositions participate in the causal rela-
tion. If we add an irrelevant proposition to the antecedent of a clause, the relation
would still be useful in the sense that conjunction of the antecedents produces the
desired effect, but it would be misleading in implying that all the antecedents were
necessary. In producing explanations, minimal causal antecedents are required in the
causal relation to ensure that explanations do not contain irrelevant propositions.

The role of primitive causes is to define the propositions over which, in some sense,
we can exercise direct control. The point at which we choose to define primitive
causes is partly a matter of convention. Often bodily movements are taken to be the
ultimate primitive causes, but this viewpoint is unnecessarily restrictive. Any well-
defined event or condition that we can reliably bring about will suffice for a primitive
cause, as long as the purpose of producing explanations is to give a set of conditions
that account for the observed facts, and over which we have control.

One way to understand the causation relation R is as a provability relation. The
provability relation is composed from individual inference steps combined into a tree;
in the same way, the causation relation is specified by combining definite clause
inference steps into a proof. Like classical provability, causation is monotonic:

If A F-R c and B D A, then B I-R c

and cumulative:
If A FR c and B, c FR d, then A, B FR d.

As we have stated, the important part of the causal relation is that it captures the
functional dependence of the domain variables; this is the main difference between
a causal relation and a merely correlational one. The asymmetry of causation is
represented by the asymmetry of inference in a definite clause theory.

These remarks leave open the question of whether, in a particular instance, it is
possible to have a causation relation that is symmetric for two propositions, or more
generally to have one that is cyclic, containing a loop that leads from a proposition
back to the same proposition. Other commitments may answer this question: for
instance, assuming that causes always precede their effects in time forces the causal
relation to be acyclic. The definite clause theory itself does not enforce any acyclic
condition.

There are some further complications in defining a causal relation that we will
mention here, without offering any definitive solutions. The first is that of inferred
causation. We mentioned this briefly in proposing the definitional theory in Section
5.2.2. We use only a simple form of definitions to represent complements; any full-
fledged theory of causation should at least take into account abstraction relations
among propositions, e.g., "A 40-watt bulb is a type of bulb."
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Another problem arises when our knowledge of the causation relation is partial.
We have already remarked that we may know only a subset of the actual causation
relation. Other kinds of uncertainty also exist. For example, suppose we know that
dialing the number "911" connects one with either the police or the fire department,
but we don't know which. The action of dialing 911 is completely determinate, it's
just that we don't know the exact outcome. To express epistemic uncertainty of this
kind, it is necessary to describe the causation relation in an appropriate language. If
we let c stand for the action of dialing 911, d for calling the police, and e for calling
the fire department, then our knowledge is expressed by the statement:

Either c FR d or c FR e.

DCNs are not expressive enough to state this; a language that talks about causation,
such as Geffner's [Geffner, 1989], would be necessary.

5.4 Conclusion

We have developed a theory of causation in the presence of defaults about normally
occurring conditions. The theory is based on structurea called Default Causal Nets,
which integrate causal, correlational, and definitional information. These nets can be
used to generate predictions and explain observations.

We have argued that preferences among explanations can be based on noting how
causation and defaults interact. Such preferences seem to follow commonsense rea-
soning based on causal knowledge. In model-based diagnosis, any assumptions about
causation and defaults are implicit in the representation of components as being nor-
mal or abnormal, and the search for diagnoses is based on abnormal components.
Such a view, we argue, is representationally restrictive, and does not give a deep
enough analysis about how defaults interact. For example, although we can state
relations among abnormalities in the domain, these relations do not necessarily lead
to intuitively correct preferences among diagnoses in the consistency-based approach,
because material implications within the framework are not treated as causal rela-
tions.
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Abstract cisely such correspondences that make analogical rep-
resentations useful. For example, a two-dimensional

Analogical representations have long been street map could be represented by graph-theoretic
of interest to the knowledge representation structures in which nodes correspond to intersections
community. Such representations provide and arcs corresponds to road segments. Such a repre-
compact encodings of information that can sentation is analogical with the world being mapped
be cumbersome to represent and inefficient in two ways. First, paths between nodes in the graph
to manipulate in sentential languages. In corresponds to road connections in the world being
this document, we address the problem of modeled. Second, there is a correspondence between
using analogical representations effectively the existence of objects in the world and objects in the
in automated deduction systems. The pri- representation. For example, all roads are represented
mary contribution is a formal framework in the graph; thus, the closure of the set of roads is
for combining analogical and deductive rea- implicit. In contrast, expressing such closure informa-
soning. The framework consists of a set tion sententially would require an explicit statement
of generic operations on analogical struc- that the given roads constitute all roads.
tures and accompanying inference methods The work described in this paper applies equally well
for integrating analogical and sentential in-formintegration. Thecapabogicalties nthenf - to both diagrams and diagram-like structures. For thisreason, we will not distinguish further between the twowork are demonstrated for the task of rea- types. The terms diagram and analogical representa-
soning to extend incomplete maps. The ex- tion will be used interchangeably throughout the doc-
amples presented here have all been solved ument.
automatically by an implementation of the
integration framework. While analogical representations have received much

attention in recent years from psychologists [10, 11,
12], there have been few advances in understanding the

1 Introduction computational aspects of analogical reasoning. Until
recently, most computationally-oriented work has fo-

Analogical representations have long been of interest cused on properties of particular classes of diagrams
to the knowledge representation community [8, 9, 22, (e.g., Venn diagrams [21, 20], Euler circles [24], quali-
23]. The attraction of analogical representations lies tative reasoning [5, 7, 18], geometry [8]), ignoring more
with their ability to store certain types of information general aspects of reasoning diagrammatically. This
that humans can readily process but are problematic document addresses the broader question of domain-
for sentential reasoning systems. Although the power independent inference techniques for reasoning involv-
of analogical representations has been acknowledged ing analogical representations. The work encompasses
for many years, little progress has been made in under- both reasoning about and with diagrams. The former
standing how to exploit the computational advantages involves extraction of information from a diagram and
that these representations can provide, amounts to a passive use of diagrams; the latter fur-

ther supports modifications to diagrams as a result of
Analogical representations encompass both explicit di- the reasoning process, thus constituting an active useagrams (as in [6, 7]) and representation structures that o igas

are diagram-like. Although this latter class is not of diagrams.

easily defined, diagram-like representations share with Reasoning with and about diagrams should not be ac-
real diagrams the property of certain structural corre- complished by simply translating the diagram contents
spondences with the domain being modeled. It is pre-



into a sentential language, nor vice versa. Analogical contain the kind of information displayed in the fol-
structures provide compact representations of infor- lowing diagram:
mation that is cumbersome to express sententially but
generally lack the expressive power of sentential lan-
guages. Since sentential theories are a more general ownr:Ralph
representational technology, it is tempting to trans- type:offhce "ype:office
late analogical structures into first-order sentences en L U1 U2 U3
masse. But this strategy would compromise the effi-
ciency of the representation system since the special- V tyPeJI
ized inference mechanisms for the analogical structures
are replaced by general-purpose deductive methods; (I)
this point is borne out by the experimental results of The constants V and Ui are symbolic names assigned
[13, 15]. Here, we adopt a hybrid approach in which to the hallway and the three openings on it in the given
separate analogical and sentential subsystems co-exist scene. These objects and the relationships among
and inference rules for translating information between them are identified by the robot's perceptual interpre-
the two are defined. tation mechanism, which detects relevant geometric

properties and segments sensory input into meaning-
Our hybrid framework is based on a set of generic op- ful units (e.g., groups line segments and intersegment
erations for manipulating analogical structures along spaces into objects such as corridor and significant
with corresponding inference rules that invoke the op- openings). We use the term diagram element for such
erations. The operations and rules were chosen for objects. Prior knowledge about the scene was used to
their capacity to increase overall reasoning compe- determine the remainder of the information in this di-
tency through the appropriate use of analogical infor- agram, namely that certain Ui are offices and that the
mation. The framework supports both the incorpora- leftmost office belongs to Ralph.
tion of diagrammatic information into the sententialreasoner and the modification of diagrams to reflect For any particular class of applications, there will be a

freatoner andtemodificatn of dtiagreasoning; in other fixed ontology of elements and a fixed set of propertiesinformation deduced by sentential oiasrn ms, Of interest. We consider two classes of properties: sym-words, both reasoning about and with diagrams. bolic labels for diagram elements and analogical rela-

One particular class of analogical representations to tions among diagram elements. Formally, we can rep-
which we apply our work is that of office-building resent the information about labels and relations for
maps. We are currently using an implementation of diagram elements that is stored in an analogic repre-
our framework in the construction of a hybrid map- sentation S as a set of first-order models Ms. While a
learning architecture for the SRI mobile robot [16]. diagram records only those relationships and elements
For concretenes, we focus on examples from this ap- that are known to exist, each of these diagram models
plication; the work, however, applies to all types of constitutes a possible completion of the partial infor-
analogical structures. Our examples employ schematic mation provided by a diagram. For example, the type
map diagrams whose exact representations are left un- of U12 and the owners of U2 and U3 are unspecified
specified; the choice of a particular representation is in the above diagram; a diagram model would fully
immaterial to the research presented here. specify those relations.

Diagram models consist of a set of analogical relations
2 The Hybrid Framework A and a set of label relations L over a universe U.

Each member of A is a binary relation E, x Eo, with

In this section, we describe the analogical and senten- E. C U the set of diagram elements; each member of
n this subsystemsti lon g w ih d crietheraoia fr thei ntena- L is a relation E, x El, with E, C U the set of labels.tial subsystems along with criteria for their integra- Using the "displayed" format of (2, Section 1.3], we

tion. Specific intetionion rules are presented in Sec- write these models as (U, A, L, E., E,).
tions 3-4.

For the scene described by (1), the diagram elements
2.1 Analogical Subsystem are {V, U1, U2 , U3)}. We choose the label relations

TYPE(u, i) and OWNS(u, i), and the analogical rela-

The details of the analogical component will vary for tions BES(u, vt) (the opening u is next to the opening
different applications. Our formal framework isolates v) and INHALL(u, v) (opening u is in hall v). The la-
the integration methods from the specifics of any par- bei set contains {Closet, Office, Ralph, Paul, Cyril) and
ticular application through the use of an abstract char- possibly other values. The choice of relations and el-
acterization of the information stored in the analogi- ements is important in determining what information
cal system. Since we are interested in reasoning with in the analogic structure is abstracted in the hybrid
maps, we employ examples from that domain here. system; here, for example, whether an opening is to

the right or left of another opening is apparent from
A typical hallway map used by a mobile robot might the structure, but not in the models.



A key feature of analogical representations is their ca- to both ascertain the composition of areas of structural
pacity to implicitly embody constraints that other rep- uncertainty and flesh out the partial characterizations
resentations must make explicit. For example, the map given by the diagram models for the relations in L U A.
structures embed the following constraints:

"* Each opening has at most 2 adjacent openings. 2.2 Sentential Subsystem

"* Objects can have exactly I type. The sentential subsystem employs a first-order Ian-
"* Individuals can own offices but not closets. guage

"• At most one person can own a given office. Z=(PAPLE E 1,

These diagram constraints can be built into the rep-
resentation structures directly or into the operations and a corresponding proof theory. For simplicity, we
that manipulate the structures, depending on the use the diagram elements E, and labels El as standard
given implementation. For example, a bit-map rep- names for themselves in £. The predicates PA are
resentation of (1) would embed the first constraint di- interpreted by the analogical relations of the diagram
rectly through its spatial composition; the third con- models, and PL by the label relations. In addition,
straint would most likely be enforced by operations there may be other predicates and constants that have
that manipulate the structure. Either way, diagram an indirect relation to the diagram - for example, the
constraints are necessarily reflected in diagram mod- predicate NBR(z, y) representing the office-neighbour
els. For instance, all diagram models for (1) can have relationship between two people. This predicate would
only one type relation for a given diagram element, be related to the diagram predicates PA U PL by an
due to the second constraint above. axiom such as

In diagram (1), all objects of relevance (the openings Vx, y. NBR(z, y) E
and the hall itself) have been noted and the analogical 3u, v. TYPE(u, Office) A TYPE(v, Office)
relations BES and INHALL are fully determined. Al- AOWNS(u, z) A OWNS(v, y) A BES(u, v).
though there is type and ownership information miss- (3)
ing, the structure of the diagram is complete. Not Similarly, the predicate RESIDES(z, h) representing
all diagrams share this completeness. When generat- the relationship of an individual z having an office in
ing maps from perceptual input, noise or faulty sen- hallway h would be defined as
sors may both cause objects of interest to go unde-
tected and leave analogical relations only partially de- Vx, h. RESIDES(z, h)
termined. In such circumstances, we say that the di- 3u. INHALL(u, h) A TYPE(u, Office) (4)
agram contains structural uncertainty. We formalize A OWNS(u, z) .

this notion as follows.

Definition 2.1 (Determined Relation) A set of We refer to axioms of this sort as grounding axioms.
models M defined over a class of relations R = As an example of the expression and use of sentential
{rl,... r.} determines a relation ri E R if every information relative to diagrams, consider the follow-
model in M agrees on the eztension of ri. ing statements:

Definition 2.2 (Structural Uncertainty) A dia- Paul and Cyril have offices in hall V.
gram S with models Ms is structurally uncertain iff Ralph and Paul are not neighbours.
some analogical relation of the models is undetermined.

The following diagram constitutes a variation on the Given the grounding axioms (3,4), these statements
scene described by (1) in which there is structural un- can be translated into the following formulas of C:
certainty between U1 and U3 . Here, both the BES and
INHALL relations are undetermined. Dashed lines in- RESIDES(Cyril, V) A RESIDES(Paul, V) (5)
dicate regions of structural uncertainty: -,NBR(Ralph, Paul).

owpe[oh type:oIfice With respect to diagram (1), the first statement im-
U .U3 J plies that U2 and U3 are offices, one each owned

.............. by Cyril and Paul. This conclusion follows since
V type:hall {JU1 , U2, U3 ) constitutes the set of all offices in V and

(2) Ralph is known to own U1 . Deduction of this result
requires information that is implicit in the diagram's

As will be seen, our framework provides the means to structure, namely that each office can be owned by
apply sentential information about a diagram in order only one individual. With the second statement, the



only possible configuration of the scene is: about who owns which office and the diagram does not
admit disjunctive information about ownership.

o .Ralph r:.Cyvfl mxoflbP Rather than seeking an analogical structure with the

models Ms (T), the best that can be attained is a struc-L .L.... J . 2....J U I ture that adequately represent Ms(T):
V type:hall

Definition 2.4 (Representational Adequacy)
(6) An analogical structure Q adequately represents a set

Sentential information can also be used to reduce of diagram models M if M C MQ and there is no
structural uncertainty in diagrams: given the sen- other diagram R such that M C MR and MR C Mq.
tences Ralph and Cyril are neighbours and Cyril is
Paul's only neighbour, the diagram (6) follows from For example, when S is the diagram (1) and To is as
(2). defined above, the following diagram adequately rep-

resents Ms(To):

2.3 Integration Criteria

In order to determine whether a given integration owner:Ralph
method behaves in an appropriate fashion, it is nec- type:oftice type:office type:office

essary to provide a semantic account of the over-all [, U1. s. I U.2 L,.--J U3L
hybrid system. V tpe:hall

from a model-theoretic perspective, the merging of
a diagram S with a set of sentences T that describe (7)
the diagram amounts to restricting the models of S This diagram extends (1) to include the information
to those that are compatible with T. Compatibility that U2 is an office but does not include any new in-
here means that the diagram model can be expanded thatio an ownershipn
to a model for T by providing interpretations for the formation about ownership.
predicate, function, and constant symbols of C that do Soundness and completeness for inference in our by-
not overlap the diagram model. brid system can be defined using the concepts of re-

stricted models and representational adequacy.Definition 2.3 (Restricted Models) Let T be a

collection of sentences in £ describing properties of a Definition 2.5 (Soundness) A diagram update rule
diagram S and let Ms be the models of S defined for is sound iff for diagram S and theory T it generates
the sublanguage (PA, PL, E,, E,) of Z. The restriction only diagrams whose model set contains Ms(T). A
of Ms relative to T, written as Ms(T), is the set of derivation rule is sound if it generates only sentences
models (U, A, L, E,, Ei) E Ms for which some ezpan- whose model set contains Ms(T).
sion (U, A, L, E, El,,.* .) is a model of T.

The models in Ms(T) characterize the total informa- We will say that a collection of both diagram update
tion content in the hybrid system for the domain mod- and derivation rules is sound precisely when each of
eled by the analogical structures. The challenge is to its members is sound.
provide both derivation rules for determining formulas
of £ that are logically entailed by Ms(T) and update Definition 2.6 (Completeness) A set of derivation
rules for modifying S to eliminate diagram models not and update rules is derivationally complete for S and
contained in Ms(T). T iff any valid sentence of Ms(T) can be derived by

the sentential subsystem. The set is diagrammatically
In general, the analogical structures may have weaker complete if it can generate a diagram that adequately
representational capabilities than is required to cap- represent Ms(T).
ture the information content of Ms(T). Consider the
diagram (1) and the sentential theory

To = {RESIDES(Cyril, V), RESIDES(Paul, V)). 3 The Inferential Calculus

These two sources of information jointly imply that U2 The inferential calculus underlying our hybrid frame-
and U3 are offices, one each owned by Paul and Cyril; work is defined relative to a class of domain-
however, it is undetermined as to who owns which one. independent diagram operations. In this section, we
Every model in Ms(To) either has both (W2, Cyril) describe both the inference rules and operations. We
and (U3, Pau) or both (W2, Paul) and (Us, Cyril) in focus exclusively on diagrams without structural un-
its OWNS relation. However, this information cannot certainty; diagrams with structural uncertainty are
be fully manifest in the diagram since it is not definite considered in Section 4.



3.1 Diagram Operations CLOSURE-.P[z], are defined vilth respect to a diagram
S as follows:

Two classes of diagram operations are required for our

inference rules: reflection and extraction procedures. CLOSURE+.P[z] =

Reflection procedures provide a means of inserting in- {e E El U E. m J P[e] for some m E Ms )
formation into an analogical structure. For each la- CLOSURE-.P[z] = {e E E1 U E. I Ms 1= P[e])
bel predicate P(u, v) we require a reflection proce-
dure INSERT.P(u,v ) such that for el, e2 E E, U El,
the predicate P(el, e2) holds in all models of the di- The procedures CLOSURE+.P[x] and CLOSURE- .P[z]
agram obtained by executing INSERT.P(el, e2). That give minimal upper- and maximal lower-bounds, re-
is, when applied to a diagram S with model set Ms, spectively, for the precise set of values that satisfy
INSERT.P(el, e2) yields a diagram S' with model set P[z]. This set is fixed for a given diagram only when

=m E Ms I ethe relation P[z] is determined by the models of S (in
P(eie2 )) .the sense of Definition 2.1). In terms of the sentential

language Z, determination of P[z] is equivalent to theFor diagrams without structural uncertainty (the fo-~ condition that for in1 , m2 E Ms:

cus of this section), insertion procedures for 'PA are

unnecessary. Ve E E. U El. mk k P[e] E m 2 = P[e]. (8)

Extraction procedures provide access to the contents When a predicate P[z] is determined by a diagram,
of the analogical structure for use by the sentential the aximal sub- in min ed by a both
subsystem. As noted above, whole-scale translation equal to the exact closure. However, sub- and super-
of the analogical structures into first-order sentences closures are useful sources of diagram informationis infeasible. Instead, we wish to provide access to when the predicate is not determined, as will be made
the information in the analogical structures on an as apparent in Section 3.2.3.
needed basis, whereby information is accessed as re-
quired for individual deduction steps rather than all at Note that since we are considering only diagrams with-
once. The two key types of information stored within out structural uncertainty in this section, all analogical
diagrams are (1) analogical and label relationships for predicates are necessarily determined.
diagram elements, and (2) closure information about
those relationships. 3.2 Inference Rules

For each diagram predicate P(u, v), we require an ex-
traction procedure EVAL.P(u, v) for evaluating ground The inferential component of the integration frame-
instances relative to the diagram S. These evaluation work consists of rules of evaluation, domain enumera-
procedures provide the sentential reasoner with infor- tion and reflection. Evaluation and domain enumera-
mation about primitive relationships in the analogi- tion utilize information from the diagram as provided
cal structures. The procedure behaves as follows for by the extraction procedures to derive new sentences
el, e2 E E. U Ei: describing properties of the diagram. The reflection

rule permits the insertion of sentential consequencesStrue if Ms k P(e 1 , e2) derived from T into the diagrams using the reflection
EVAL.P(el, e2) = false if Ms -'P(el, e2 ) procedures.

unknown otherwise
In the definition of the inference rules, we use the no-

Closure information for a diagram S is generated by tation ae to represent the expression a with all occur-
two classes of procedures. Let P[z] represent an in- rences of the expression b replaced by c.
stance of a predicate in 'PL U 'PA that contains the
single variable z, such as BES(z, U1 ). (For simplic- 3.2.1 Reflection
ity, we restrict attention here to predicates contain-
ing only one variable.) With respect to the dia- The reflection rule sanctions the transfer of informa-
gram S, the procedure CLOSURE+ .P[z] generates the tion from the sentential to the analogical subsystem.
set of diagram elements that possibly satisfy P[z] Let T F- 0 represent the deducibility of a sentence 0
(called the minimal superclosure) while the procedure from a set of sentences T using the proof theory of the
CLOSURE-.P[z] generates the set of elements that sentential subsystem.

definitely satisfy P[z] (the mazimal subclosure). Definition 3.2 (Reflection Rule) Let T be a sen-

Definition 3.1 (Closures) Let P[z] be a nonground tential theory and S an analogical structure. If T F-
instance of a predicate in >PLL JPA. The minimal R(ti,...,tt)fortl,...,t EE. UEl andRE PAU'PL
superclosure of P[z], denoted by CLOSURE+.P[z], then R(tj, ... ,ti) can be reflected into S by executeng
and the maximal subclosure of P[z], denoted by INSERT.R(t 1 ,...,t,).
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3.2.2 Evaluation embedded formula (e.g., BES.z, U2) A OWNS(z, Paul)
in (9)) may have truth value true; this guarantees that

The evaluation rule sanctions replacement of ground all relevant instantiations of the quantified variable are
instances of a predicate R E PA U PL by either true or covered. For universal quantifiers, the domain should
false, in accordance with the contents of the analogical exclude values for which the embedded formula is al-
structure. In the case where the relationship denoted ready determined to have truth value true. We call a
by R is undetermined, the evaluation process has no predicate instance whose exact closure satisfies these
effect. conditions focus expressions for the given quantified

formula. In essence, a focus expression prunes from
Definition 3.3 (Evaluation Rule) Let 4 be a for- consideration those bindings of a given quantified vari-
mula that contains an instance R(ti,..., tt) of a pred. able that do not provide useful information.
icate R E PA UTPL. If EVAL.R(t1,...,tk) = 0 where
0 E {true,false} then evaluation of R(ti,...,tt) in • To formalize the concept of focus expressions, we in-
yields (9 troduce definitions for the polarity and definiteness of

predicate instances in a formula.

3.2.3 Domain Enumeration Definition 3.4 (Polarity) An instance of a predi-

The domain enumeration rules allow the elimination cate in a formula 0 is called positive if the instance
of quantifiers in certain cases through the introduc- maps to an unnegated literal in the conjunctive nor-
tion of an appropriate domain of values that covers mal form of 0 and is called negative otherwise.
the relevant instantiations of the quantified variable. Definition 3.5 (Definiteness) An instance of a
Consider the assertion predicate in a formula 0 is called definite if the in-

3u. BES(u, 112) A 0WNS(u, Paul) (9) stance maps to a literal in a clause of length one in
the conjunctive normal form of 0 and is called indefi-

relative to diagram (1). The interpretation of this for- nite otherwise.
mula is that the diagram element owned by Paul is lo-
cated beside U2. The conjunct BES(u, U2) limits the We will combine the notions of polarity and definite-
possibilities for this diagram element: according to (1), ness, referring to individual instances as negative in-
the element must be either U1 or U3 . As such, the for- definite or positive definite as appropriate. The expres-
mula OWNS(U1 , Paul)V OWNS(U3, Paul) follows from sion INHALL(u, V) is a negative indefinite instance in
(9). Similarly, the universally quantified formula (10) and a positive definite instance in

Vu. INHALL(u, V) D TYPE(u, Office) (10) 3u. INHALL(u, V) A TYPE(u, Closet).

can be viewed as a statement about the predi- Definition 3.6 (Focus Expression) If l is a quan.
cate TYPE(u, Office), with INHALL(u, V) serving tified formula (either Vz. a or3z. o) containing a pred-
as a filter on the set of relevant instantiations of icate instasce P[z] then P[z] is a focus expression for
the quantified variable. According to the diagram 0 if either
(1), the only values that satisfy INHALL(u, V) are
{U 1, U2 , U3) (i.e., the exact closure of INHALL(u, V) * 0 has the form Vz. a and the occurrence of P[z]
is {UI, U2, U31). Thus, the conjunction is negative indefinite, OR

A TYPE(d, Office) * 0 has the form 3z. a and the occurrence of P[z]
dE{U 1 ,U 2,u} is positive definite.

is equivalent to (10) with respect to models for diagram The domain enumeration rule is formally defined as
(1). follows.

We refer to the technique used above for applying clo-
sure information to eliminate quantifiers as domain Definition 3.7 (Domain Enumeration Rule) If
enumeration. Domain enumeration does not apply to ,' is a quantified expression, either 3z. a or Vz. a,
all predicate instances containing a quantified variable. containing a focus expression 4[z] with mazimal sub-
The formula 3u. -"BES(u, UV) A TYPE(u, Closet) il- closure D- and minimal superelosure D+ then domain
lustrates this point. In this case, the exact closure enumeration for 0 and O[z] yields:
for BES(u, UI) is not an appropriate restriction of the V ( if ik is 3z. a
terms of £; elimination of the existential quantifier
using the exact closure would lead to unsound conclu- dED+

sions. . .true
For existential quantifiers, the domain used in domain A (of).rl isf ' vk . a
enumeration must include all bindings for which the dED-



Note that when applying domain enumeration to a whose exact closure in diagram (a) is {UI); domain
universally quantified formula Vz. a[z], the embedded enumeration is applied to produce formula S7. Evalu-
formula c[z] need not be fully retained. Instead, the ation of the expression TYPE(U1 , Office) with respect
simplification of c[z] in which the focus expression is to diagram (a) leads to formula S8, which contains
replaced by true suffices, since the focus expression has the focus expression BES(U1 , y) whose exact closure is
truth value true for all terms in its maximal subclosure. {U2 ). Domain enumeration for BES(U1 , y) yields for-
For example, INHALL(u, V) : TYPE(u, Office) can rnulaS9, which along with S4 entails OWNS(Paul, Us).
be reduced to the expression TYPE(u, Office). Focus Application of the reflection rule to this atom yields
expressions must be retained for existentially quanti- the second diagram (b).
fled formulas: by definition the maximal superclosure The formula S12 is obtained from the given for-
may contain terms that are not in the exact closure mula frlESDS(Cyril, V) by applying the same steps
(and hence do not satisfy the focus expression). used from SI to S4 above. The ownership of Us

Domain enumeration could be extended to make use was undetermined in the original diagram; however,
of nonatomic focus expressions. For example, the con- OWNS(Cyril, Us) is necessarily false since the new di-
junction BES(z, Us) A TYPE(z, Office) could serve as agram (b) indicates that the owner of U3 is Paul. Eval-
a focus expression in the formula uation can be applied to the formula S12 using dia-
Vz. BES(z, Us)ATYPE(z, Office) D OWNS(z, Eva). gram (b) to derive S13. Note that this last deduc-

The intersection of the maximal subclosures for the tion could not be made from S12 and the sentence
individual conjuncts would serve as a more restricted OWNS(Paul,17s) alone; again we need the diagram

indiidul cnjuctswoud seve s amor retrited constraint that ownership is unique. Finally, the con-
(and hence more useful) domain for the universally tent that orm unibe Flece to podc

quantified variable x. Similalry, the disjunction tents of this last formula can be reflected to produce

BES(z, U4) V BES(z, U6) could be employed as a fo- the diagram (c), which adequately represents Ms(To).

cus expression in
3x. (BES(z, U4) V BES(z, 176)) A OWNS(z, Ann) . 4 Structural Uncertainty

The appropriate domain in this case would be the
union of the minimal superclosures for each disjunct. Consider the diagram
Straightforward extensions of Definitions 3.6-3.7 sup-
port this generalization; we forego their technical ownero .P
statement in this paper. I ISI L U ......... I._ ~

3.3 Example V type:hal

We illustrate the workings of our integration rules by (11)
applying them to the scenario presented in Section 2.2, containing a region of structural uncertainty between
namely diagram (1) with sentential theory elements U1 and U3. This diagram has models in which
To= {-'NBR(Ralph, Paul), there are zero, one, two, etc, diagram elements in the

RESIDES(Cyril, V), RESIDES(Paul, V)) . uncertain area. Without further information, there

A derivation schematic, including both diagrams and is no way to determine which of these models cor-

sentences, is provided in Figure 1. responds to the actual situation that the diagram is
steintended to represent.

Consider first the given formula RESIDES(Paul, V).
Rewriting using definition (4) yields formula S2 in the Accounting for structural uncertainty requires a slightfigue. he redcat INALL~, V isa fcuscx- generalization of the inferential calculus presented infigure. The predicate INHALL(u, V) is a focus ex- Section 3. First of all, reflection oearsmust be

pression in S2 and its exact closure in diagram (a) provided for the analogical predictio peators PA st di-
is {UI, U2, Us}. Domain enumeration using this fo- prode for te aogicpedicate ne s ot i-
cus expression yields formula S3. Diagram (a) con- agrams can be modified to incorporate new analogi-.tains the information that U1 and Us are offices, thus cal relations determined by the sentential subsystem.
TYPE(U1 , Office) and TYPE(U 3, Office) in 53 can be The definitions of the remaining diagram operations

TYPEUlOffce)and YPEU3,Offce) n S ca be and the various inference rules remain unaltered but
replaced by true using the evaluation rule. In addition, the definition of minimal superclosure requires elabo-
since the diagram indicates that Ralph owns U1, evalu- ra tion B s minimal superclosure ofqaired-
ation can be used to rewrite OWNS(Paul, Ui) to false. ration. Because the minimal superclosure of a pred-

This evaluation step exploits the diagram constraint icate must include all possible values for which the

that ownership is unique. The evaluations combined predicate holds, it is necessary to consider whether el-

with tautological simplification produce formula S4. ements inserted in structurally indeterminate regions
could satisfy the given predicate. In contrast, the def-

Expansion of the given fact -"NBR(Ralph, Paul) using inition of maximal subclosure is not affected by struc-
definition (3) gives formula S6 in the figure. This for- tural uncertainty since diagram elements that do not
mula contains the focus expression OWNS(Ralph, z) appear in all models are not included in the maximal



DIAGRAM SENTENCES

owner: Ralph
W type:office "yp:Office 1  RESMUE(Paui, V) S1

U1 L.-. U2 L. jU3 I Dokftnlo
V type:hell 3. iL HALL4U, V) A TYM~U Off=c) A OWNS(Paul U) S2

INHALL~u, V): (Ul, U2, U3)} Domf Eunum

V TYPE(d, Off=) A OWNS(au, d) 83
TYPE(U3, Office): trued4EUU2U3
TYPE(U3, Office): true d UJ,
OWNS(Paul, UI): false Eval

[TYPE(u2, offic)A OWNS(Pau, U72)]1 OWNS(PWAu U73) S4

-' NBR(Ralpb, Paul) S5

1 DelinitOw

V x~y.-, [TYPE(x,Office) A TYE(yOffce) A OWNS(RalpbX) A OWNS(Paul,y) A BES(X,y)] S6
OWNS(Ralpb,x): (171) == Dom Enum I

V y. -, (rYPE(Ul,OfflCC)A TYfPE(yOffi0C)A OWNS(PUL~Y) A BES(Ul~y)) 87

TYPE(Ul,Office): true == Eval I
V y. -, CrYPE(yOffice) AOWN0Puly) ,'BES(UI,y)) 88

BES(Ul,y): (U72) Do Ervi I
owner:Ralph owner:Paul -YPE(1J Office) V-'OWNS(PauIU2) S9
type:oflice typ.:off ice Refec FromnS4

U1 U .=U OWNS(PauIU3) 810
V type:hall

rSimilar Wo S1-S4
rnTYE(U2, Office) A OWNS(Cyril, U72)] v OWNS(Cyri. 173) S12

OWNS(Cyuil.U3): false => Eval I

Gi owner:Ralph owner:Cyrdl owner:PauI TYPE(U2,Offl) A OWNS(Cyril,U2) 813
type:office type:office type:offloe Reflect

L~UitU2 1  U3~J 4
V type:haiI

Figure 1: An Example Derivation
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subdosure. when P[z] i determined by Ms, otherwise

4.1 Minimal Superclosures with Introduced {e E El U E, Im k P(e] for some m E Ms) U {lk)
Names

where I4 is an introduced name.
To account for structural uncertainty in diagrams, we
exploit a technique of the natural deduction calculus The minimal superclosure for BES(U1 , z) relative to
for dealing with existential elimination. With this cal- diagram (11) is {Us, Ii,) where 11 is an introduced
culus, the existential quantifier of a formula 3z.:[z] name.
can be eliminated by introducing a new individual con-
stant c for z, yielding 0[c]. The justification for the The new definition of minimal superclosure is used as

introduction is that, since c does not appear elsewhere before in domain enumeration except that when an

in the proof, it can refer to an arbitrary individual, element name Ih is introduced for a minimal superclo-
sure, the diagram is modified to include inequalities

We employ the same principle in formulating minimal between Ik and all current diagram elements. The
superclosures for diagrams containing structural un- referent of an introduced I4 may be determined by fu-
certainty. Consider diagram (11) relative to the sen- ture sentential reasoning steps, possibly leading to the
tence 3z. BES(U1 , z). It could be that U3 is next to insertion of a new diagram element via the reflection
UI, or that there is an intervening element I, situated rule. Such a situation arises in the example presented
to the right of U1 . The minimal superclosure must below.
take both of these cases into account, yielding the set
{U3, II}. 4.2 Example: Structural Uncertainty

Employing names for hypothesized individuals intro-
duces a complication to the diagrams, since we have Consider diagram (11) and the theory
heretofore assumed that all elements were "standard-
ized apart," receiving different names if and only T, = {NBR(Ralph, Cyril), NBR(Paul, Cyril)).
if they were distinct. This is not the case with
hypothesized individuals; for example, if we were Every model in Ms(T1 ) has exactly one element be-
later to perform domain enumeration on the sentence tween U1 and U3 , with this element being labeled as
S3y. BES(U3 , y), introducing the name 12, it could be the office of Cyril. We show how a new diagram that
the case that both I, and 12 refer to the same individ- reflects this information can be generated using the
ual. To account for naming and identity, we assume integration calculus.
that the diagram keeps track of introduced names and
their possible referents.I Applying the same steps used to derive S8 from

-'NBR(Ralph, Paul) in Figure 1, we generate the fol-
When the exact closure of an analogical predicate P[z] lowing pair of formulas from T1 :
is determined by the diagram models (i.e., condition
(8) is satisfied), the minimal superclosure reduces to 3z. BES(U1 , z) A TYPE(z, Office) A OWNS(Cyril, z)
the exact closure. Otherwise, the minimal superclo- (12)
sure consists of those diagram elements that satisfy the
predicate in any diagram model, along with an intro- 3z. BES(U3 , z) A TYPE(z, Office) A OWNS(Cyril, z).
duced name for a hypothesized element. Even though (13)
multiple elements can appear in regions of uncertainty As noted above, the minimal superclosure for
and there may be more than one such region in a dia- BES(U1 , z) relative to diagram (11) is {U 3 , I,). Do-
gram, only one introduced element is required for the main enumeration for the focus expression BES(U1 , x)
minimal superclosure. Restriction to one such element in (12) yields
is possible because the purpose of domain enumeration
is to identify a solitary element satisfying the matrix BES(U1 , Us) A TYPE(U3 , Office) A OWNS(Cyril, U3 )
of the existentially quantified formula. V

Definition 4.1 (Minimal Superclosure for PA) BES(U(, I4) A TYPE(1 1, Office) A 0WNS(Cyril, I,)

Let P[z] represent an instance of a predicate in PA that along with the naming constraints Us ( 1 and U1  4 I).

contains the single variable z. The minimal superclo- Evaluation of OWNS(Cyril, Ug) with respect o t he di-

sure of P[z], denoted by CLOSURE +.P[z], is defined a lua tio n of (sinc own esp to th us

for a diagram S as agram returns false (since ownership is unique), thus
(14) simplifies to

le E El U E, I Ms ý Pfe]} BES(U1 , 11 ) A TYPE(11 , Office) A OWNS( Cyril, Ii)

'In other words, diagram operations must track equal- (15)
ities and inequalities for introduced names. The conjuncts in this formula can be reflected to pro-



duce the new diagram from the previous example). Domain enumeration for
BES(z, Us) in (13) now gives

:O=Ph ow:ner Yri UUYowner.PauU
Itype:ce tpofice BES(U3, U1) A TYPE(Ui, Office) A 0WNS(Cyril, UI)

Ui J it . ...... J BES(Us, 12) A TYPE(12 , Office) A OWNS(Cyril, 12)

V type:hall with the inequalities 12 $ U, and 12 0 U3 . Note that

in this case, the inequality 12 # 1, is not added since
(16) 1, does not refer to a current diagram element.

Here, a new diagram element has been created to serve At this point, no modifications to the diagram are
as the referent of the introduced name I,. possible, and no further derivations by the senten-

In diagram (16), the expression BES(z, U3 ) has min- tial subsystem lead to any reflections back to the di-
imal superclosure {1, 12), for some introduced name agram. While the atoms BES(U1 , 1,), BES(U3, 12),
12. Domain enumeration for BES(z, U3 ) in (13) gives OWNS(Cyril, 11) and OWNS(Cyril, 12) are all deriv-

BES(U3,II) A TYPE(II, Office) A OWrNS(Cyril, 11) able, they have no effect on the diagram individually.V In combination though, they constrain I, = 12 to be
BES(U3,12) A TYPE(I2, Ofice) OWNS(Cyril, 12) the unique office situated between U, and U2 . Gen-

erating a diagram that adequately represents MD(TI)
(17) requires reasoning by caes about the possible loca-

along with the inequalities 12 # U1 , 12 6 U3 , and tions of introduced elements and is beyond the scope
12 411. of the integration calculus presented in this paper.

Since the current diagram indicates that Cyril owns I,
(and cannot own 12 since 12 : 1,), the evaluation rule 5 Properties of the Framework
can be applied to eliminate the second disjunct of (17).
Further evaluations lead to the formula BES(U3 , I,), The integration framework satisfies the following prop-
thus establishing that the introduced name 12 does not erties.
refer to a realizable diagram element. Reflection of this
last atom yields the diagram (6), which adequately Proposition 5.1 (Soundness) Reflecfion, evalua-
represents Ms(TI). lion and domain enumeration are sound.
4.3 A Troublesome Example An inference rule that derives a formula t from a given

formula 4, is equivalence-preserving with respect to a

The new definition of minimal superclosure does not class of models M when M 1= 4 .
always lead to an adequate representation of the re-
stricted class of diagram models. Suppose that we re- Proposition 5.2 (Equivalence) Domain enumera-
late sentences (12,13) to the following diagram D: tion using exact closures for a diagram S is an

equivalence-preserving inference rule uith respect to

owner.Ralph owner:Paul the models of S.
L tpe:oUt? type:offU3 I The proofs of the propositions are quite straightfor-

S...... J UL ...................... J U3L. ...... J ward; we defer them to a longer version of the paper.
V tfe:hall The integration rules are neither derivationally nor

(18) diagrammatically complete. The central problem is
that the rules focus on properties of individuals and

The models MD(TI) are adequately represented by a their relationships with other individuals, failing to
diagram similar to (6) but with regions of uncertainty account for embedded diagram constraints. Dia-
to the left of U, and to the right of U3 . As we will show, gram constraints are certainly made use of at times.
our integration calculus cannot produce this diagram. In going from 53 to S4 in Figure 1, the unique own-
The minimal superclosure for BES(Ul, x) is again ership constraint made it possible to conclude thatThe inial sperlosue fr BE(U 1 z) s aain OWNS(Pau), U1) had truth-value false, given that
{1I3, I) as was the case in the previous example (pro- OWNS(Ralph, U1 ) held in diagram (a). However, it

vided we reuse I, as the introduced name) and we S impoible to directly reason with the diagram con-

can similarly derive the formula (15) from (12). How- straints.

ever, since 1I could be located on either side of U, we

cannot insert a new element into the diagram as the In the remainder of this section we briefly consider the
referent of 11. This inability to situate I, leads to a issue of completeness for propositional sentential the-
different minimal superclosure for BES(U3 , z), namely ories. We note that the discussion is also of relevance
1{U1,12 ) (again we reuse the same introduced name to those first-order theories that can be reduced to



propositional theories through appropriate use of the does not currently support. As noted above, reasoning
domain enumeration rule. by cases is also required to overcome the form of di-

Derivational completeness demands the derivability agrarn incompleteness that arose in Section 4.3. ThisDeiainlcmltns dmnstedrvblt capability presents an interesting avenue for further
in the sentential subsystem of any sentence valid in research.
Ms(T). Suppose we pick a propositionally-complete
refutation strategy for the sentential subsystem. Is
the resulting system complete? The answer is "no." 6 Summary
Consider the following set of statements:

OWNS(Paul, U1) V OWNS(Paul, U2) We have described a domain-independent formal
OWNS(Ralph, U1) V OWNS(Ralph, U2) framework for integrating sentential and analogical
OWNS(Cyril, U1) V OWNS(Cyril, U2 ) representations. We illustrated the workings of the

framework for the application of reasoning sententially
Given the embedded property of unique ownership, to extend the information content of maps, both with
these sentences are inconsistent with respect to any and without structural uncertainty. The integration
diagram in our class of maps. Even so, it is not al- rules of the framework are sound as well as derivation-
way possible to derive the empty clause. In particular, ally complete in the propositional case.
no refutation is possible given a variation of diagram The integration framework has been implemented on
(1) in which all ownership information has been re- top of the KLAUS automated deduction system [26]
moved. Because the uniqueness constraint on owner- using the method of universal ataent [14, 15] to
ship is embedded in the representations and operations formulate the integration rules. The system has been
of the analogical structures, the integration rules pro- successfully applied to problems involving reasoning
vide no means of relating this constraint to the sen- with maps, including the examples presented in this
tences above. paper. Much work remains to be done on control issues
Derivational completeness can be attained by extend- for the implementation. In particular, the ordering of
ing the evaluation rule to sets of literals. Define: domain enumerations can greatly impact the efficiency

EVAL*(/ 1,...1i)= of reasoning.

There has been a resurgence of interest in computa-
inconsis if Ms k -,(I, A ... A In) tional models for diagrammatic/visual reasoning dur-
unknown otherwise ing the past few years. Most similar in nature to our

Using this evaluation procedure, we can apply total research is the work on Hyperproof [1]. The Hyper-
narrow theory resolution [25] as a refutation-complete proof system combines sentential reasoning with dia-
derivational procedure. This procedure is a variant grammatic representations of a chessboard containing
of hyperresolution in which a set of literals, one from blocks. In Hyperproof, much of the complexity under-
each clause of the resolution, are tested for consistency lying the integration of diagrammatic and sentential
against the diagram; if they are inconsistent, the result information is implicit in the system; in contrast, our
of the resolution is a clause consisting of a disjunction research has sought to provide a domain-independent
of the remainders of each resolved clause. 2  inferential framework in which all aspects of integra-

tion are made explicit. A second difference relates to
Diagram completeness is generally harder to achieve control: the inference rules presented here automati-
than derivational completeness because it requires cally combine sentential and diagrammatic reasoning,
the sentential subsystem to be complete for atomic while Hyperproof requires user interaction to guide the
consequence-finding. Consider the theory: reasoning process.

T = fOWNS(Paul, U3) V OWNS(Cyril, U3)) The work of [17] presents a computational model for

relative to diagram (1). Given the embedded diagram reasoning with diagrammatic representations but em-
constraint that ownership applies only to offices, it is phasizes the emulation of human reasoning about vi-
possible to derive TYPE(U3, Office) by refutation. But sualization. Computational imagery [19] defines a rep-
TYPE(U3, Office) cannot be derived as a consequence resentational framework for reasoning with both visual
of the diagram and T. Arriving at this conclusion re- and spatial information but does not address the con-

quires a form of reasoning by cases that our framework nection to deductive inference.

2 AOur work also overlaps to a certain extent with re-2Although we can achieve derivationai completeness us- search in the hybrid reasoning community [4, 3]. Other

ing theory resolution in a refutation system, in practice we than o se hybrid reasoning to analOgh-
might not want to use theory resolution directly, since it than our specialization of hybrid reasoning to analogi-
is a multiple-clause inference rule. It would be more effi- cal representations, the main difference between the
dent to consider a variation on the Davis-Putnam method material presented there and the hybrid framework
in which branches are closed when they contain a set of presented here is the latter's emphasis on reflecting
atoms that are inconsistent according to the diagram. derived information back into analogical structures.
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Abstract mining characteristics of an environment that cannot be
Many diverse sources can contribute to the successful directly perceived by the mobile robot. For example, a
interpretation of sensory input. One fundamental prob- robot cannot determine the owner of a particular office
lem for perception is integrating these sources into the using range-finding sensors. The ability to incorporate
interpretation process. We present a hybrid methodol- contingent information into the perceptual interpreta-
ogy for perception that addresses this integration prob- tion process would make it possible to eliminate such
1em. The approach integrates special-purpose analog- gaps in the robot's representation of its environment.
ical representations used to store partially interpreted The difficulty, however, is that contingent information,
sensor data with a general-purpose sentential language and other types of information that can contribute to
employed to represent more cognitively based informa- the interpretation process, may be expressed as graphs,
tion about a domain. The paper describes a formal ap- diagrams, logical formulae or in some other format that
paratus for unifying the sentential and analogical repre- differs substantially from the geometrical representa-
sentations as well as inference mechanisms for translat- tions prevalent in sensory analysis.
ing between the two subsystems. We exhibit the utility This paper presents a hybrid framework for percep-
of the framework for the task of integrating contingent tion that supports the incorporation of diverse sources
information into maps. of information into the perceptual interpretation pro-

cess. Special-purpose analogical representations serve
1 Introduction as the primary repository for geometrical interpreta-
High-level symbolic representations of information play tions of sensor data, while a general-purpose logical
an important part in perceptually grounded intelli- language represents more cognitively based information
gent systems. The need to connect sensory input to about the domain. We call this latter sentential infor-
high-level representation structures is apparent for sys- mation because it is expressed in the form of sentences
tems that perform cognitive operations, such as mobile in a language. Successful perception involves many lay-
robots that formulate run-time plans. Traditionally, at- ers of interpretation and hence a corresponding hierar-
tention has focused on the flow of information from per- chy of representation structures [2]. Generally speak-
ceptual input to a high-level symbolic language; how- ing, we can subdivide these layers into three sections:
ever, the transfer of information in the opposite direc- sensor data is refined into an image-level representation,
tion can also be valuable. In particular, many impor- which is further interpreted to provide a scene-level de-
tant perceptual tasks can be executed more robustly scription [7]. Although sentential reasoning can be put
when symbolic reasoning is incorporated into the pro- to good use throughout, we are interested primarily in
cess of perception itself. applying sentential reasoning to improve a scene-level

To date, most perceptual interpretation systems have interpretation of sensed information.
relied exclusively on special-purpose representations The fundamental technical challenge in building the
and algorithms that embed model information for a hybrid framework is bridging the gap between sentential
class of perceptual tasks. Although these representa- and scene-level representations. We present a formal
tions and algorithms are essential to timely interpre- apparatus for connecting sentential and analogical rep-
tation, we argue that the inclusion of more general- resentations along with efficient inference mechanisms
purpose representation and reasoning mechanisms can for translating between the two. In contrast to previous
greatly extend the capabilities of the system. In sup- work in the hybrid systems community, our framework
port of this claim, consider the role of contingent infor- supports the reflection of information derived through
mation (7] in perception. Contingent information de- sentential reasoning back to the analogical structures.
scribes properties that hold for a particular situation For concreteness, we consider the specific problem of
or context rather than in the general case, such as the employing contingent information in the task of map-
fact that the stairwell is beside the elevator in a given learning. Many of the results, however, apply to arbi-
building or that a given office belongs to a certain in- trary hybrid architectures that link analogical and sen-
dividual. Contingent information is essential for deter- tential subsystems.

i i I I



2 The Hybrid Framework properties of interest. We consider two classes of prop-
Integration should not be achieved in the hybrid system erties: assignment of labels to scene elements and ana-
by simply translating the contents of one representa- logical relations among scene elements. Formally, we
tion language into the other. Analogical and sentential can represent the information about labels and relations
structures are effective for representing different types for scene elements that is stored in an analogic repre-
of information. Analogical structures provide a con- sentation S as a set of first-order models Ms. While
venient means of representing closure information im- a scene structure records only those relationships and
plicitly while also permitting direct access to analogical elements that are known to exist, each of these scene
properties; however, such structures lack the expressive models constitutes a possible completion of the partial
power of formal logic. Since sentential theories are a information provided by a scene structure. For exam-
more general representational technology, it is tempt- pIe, the type of U2 or the owners of U2 and U13 are
ing to translate analogical structures into first-order unspecified in the above diagram; a scene model would
sentences en masse. But this strategy would compro- fully specify those relations.
mise the efficiency of the representation system since Scene models consist of a set of analogical relations
the specialized inference mechanisms for the analogi- A and a set of label relations L over a universe U. Each
cal structures are replaced by general-purpose deduc- member of A is a binary relation E, x Eo, with E, C U a
tive methods. Our strategy is to build separate ana- distinguished set of scene elements; and each member of
logical and sentential subsystems along with inference L is a relation E, x Et, with E, C U a distinguished set
rules for translating information between them. of label elements. Using the "displayed" format of [3,

Section 1.3], we write these models as (U, A, L, E., EI).
2.1 Analogical Subsystem Scene models are used as an analytic tool for charac-
The details of the analogical subcomponent will vary for terizing the semantic content of an analogic structure;
different applications. Our formal framework isolates all computations are done on the structure itself.
the integration methods from the specifics of any par- For the scene described by (1), the scene elements are
ticular application through the use of an abstract char- {V, U1, U2, U131. We choose the label relations TYPE
acterization of the information stored in the analogical and OWNS, and the scene relations BES(u, v) (the
system. Since we are interested primarily in analog- opening u is next to the opening v) and INHALL(u, v)
ical structures employed for map-learning in an office (opening u is in ball v). The label set consists of
environment, we employ examples from that domain { Closet, Office, Ralph, Paul, Cyril). The choice of rela-
throughout this document. tions and elements is important in determining what

A typical scene-level description of one side of a hall- information in the analogic structure is abstracted in
way stored in the representation structures of a robot the hybrid system; here, for example, whether an open-
might contain the following information:' ing is to the right or left of another opening is apparent

from the structure, but not in the models.
Sv tpe:hall In the example, the entire hallway has been fully per-

I I I L.--Ji ceived. Thus, all objects of relevance (here, the open-
ul u2 u3 ings and the hall itself) have been detected and the

type:office type:office analogical relations BES and INHALL are fully deter-
owner.Ralph mined. More generally, noise or faulty sensors may both

(1) cause objects of interest to go undetected or uninter-
The constants V and U, are symbolic names assigned preted and leave analogical relations only partially de-
to the hallway and the three openings on it in the given termined. In such circumstances, we say that the scene
scene. These objects and the relationships among them structure contains perceptual unceriainty?. For instance,
are identified by the robot's perceptual interpretation the following diagram represents a map of the above
mechanism, which detects relevant geometric properties scene for which the sensor input between U1 and U3
and segments sensory input into meaningful units (e.g., could not be interpreted; dashed lines indicate regions
groups line segments and intersegment spaces into ob- of perceptual uncertainty:
jects '-1ch as corridor3 and significant openings). We
use I term scene element for such objects. Prior
knowledge about the scene was used to determine the v type:hal
remainder of the information in this diagram, namely ............ . -
that certain U, are offices and that the leftmost office ul u3
belongs to Ralph. type:office type:office

For any particular class of applications, there will be ownerRalph
a fixed ontology of scene elements and a fixed set of (2)

'The robot would most likely represent this diagram in- The integration problem that we address is to use
ternally using graph-theoretic structures (e.g., nodes rep- contingent information about the scene in order to both
resenting portals and links between nodes representing the ascertain the composition of areas of perceptual uncer-
adjacency of portals, along with a higher-level graph for tainty and flesh out the partial characterizations given
connectivity of hallways). by the scene models for the relations in L and A.



2.2 Sentential Subsystem appropriate for combining analogical and sentential in-
The sentential subsystem employs a first-order language formation.
£ = (PA, PL, E., E,•- .) for expressing contingent in- Let T be a theory of £ expressing contingent knowl-
formation about a scene. For simplicity we have used edge for a scene and let Ms be the scene models de-
the scene elements E, and label elements E, as names fined for the sublanguage (PA, PL, E,, EI) of L. From
for themselves in L. The predicates PA are interpreted a model-theoretic perspective, the incorporation of T
by the analogical relations of the scene models, and PL into the scene structure S eliminates from Ms those
by the label relations. In addition, there may be other models that are not compatible with T. A model
predicates and constants that have an indirect relation m = (U,A, L, E., Ei) E Ms is compatible with T if
to the scene - for example, the predicate NBR(z, y) rep- some expansion m' = (U, A, L, E., El,. --) is a model
resenting the office-neighbour relationship between two of T. The expanded model contains interpretations for
people. This predicate would be related to the scene the predicate, function, and constant symbols of £ that
predicates by an axiom such as do not appear in the language of the scene model.

Define the restriction of Ms relative to T, written
Vx,y. NBR(z,y) as Ms(T), to be the models in Ms that are compat-

3u, v. TYPE(u, Office) A TYPE(v, Office) ible with T. Ms(T) characterizes the total informa-
A OWNS(u, z) A OWNS(v, y) A BES(u, v) . tion for the scene contained within the hybrid system.

(3) The fundamental challenge is to provide mechanisms
Similarly, the predicate RESIDES(z, h) representing for modifying the analogical structures to reflect the
the relationship of an individual z having an office in contents of Ms(T). In particular, we require both a
hallway h would be defined as consequence operation for determining sentences of C

that are logically entailed by Ms(T) and an update op-Vz, h. RESIDES(z, h) _eration for modifying the scene structure to reflect the
3u. INHALL(u, h) A TYPE(u, Office) (4) derived consequences.

A OWNS(z, u) . In general, the analogical structures may have weaker

We refer to axioms of this sort as perceptual grounding representational capabilities than is required to capture
axioms. the information content of Ms(T). Consider the dia-

As an example of the expression and use of contingent gram (1) and the contingent theory
information relative to diagrams, consider the following To = { RESIDES(Cyril, Hi), RESIDES(Paul, H1))
statements: These two sources of information jointly imply that U2

Paul and Cyril have offices in hall V. and U3 are offices and that Paul and Cyril each own
Ralph and Paul are not neighbours. one of these offices, although it is undetermined as to

Given the grounding axioms (3,4), these statements can who owns which one. Every model in Ms(To) either
be expressed in £ as has both (U2, Cyril) and (U3, Paul) or both (U2, Paul)

and (U3 , Cyril) in its OWNS relation. However, this
RESIDES(Cyril, V) A RESIDES(Paul, V) information cannot be manifest in the scene structure

A since it is not definite about who owns which office and
With respect to the scene diagram (1), the first state- the scene structure does not admit disjunctive informa-
ment implies that U2 and U3 are offices, one each owned tion about ownership. We shall say that an analogical
by Cyril and Paul ( With the second statement, the only structure Q adequately represents a set of scene models
possible configuration of the scene is the one given be- M if M C Mq and there is no other scene structure R
low: such that M C MR and MR C MQ.

We will call a given consequence and update oper-
vtypha 1 ation pair sound if it generates only scene structures

whose models contain M, (T) and will call the pair comn-
I_ I | plete if it produces structures that adequately represent

u1 u2 u3 M. (T).
type:office type:office type:office

owner:Ralph ownerCyril owner:Paul 3 An Integration Framework
(6) We now present a collection of sound but incomplete

When the sentential facts are applied to the scene integration rules for merging scene and contingent in-
(2) containing perceptual uncertainty, no updates to formation. As will be seen, completeness cannot be
the diagram are possible. However, given the sentences attained without the addition of substantially more ma-
Ralph and Cyril are neighbours and Cyril is Paul's only chinery to the basic framework.
neighbour, the scene description (6) follows.

3.1 Interface
2.3 Integration Criteria The integration process requires two types of trans-
We now turn to the problem of characterizing the se- lation mechanisms for communicating information be-
mantic content of our hybrid system. This character- tween the representation subsystems: reflection and er-
ization will determine what inference mechanisms are traction procedures.



Reflection procedures provide a means of inserting 3.2 Inference Rules
information into an analogical structure. For each label The inferential component of the integration framework
and analogical predicate P(u, v) we require a reflection contains a standard proof-theory for first-order logic
procedure INSERT.P(u, v) such that P(u, v) holds in all along with the rules of evaluation and domain enumera-
models of S after INSERT.P(u, v) is invoked, for u and lion. These two rules utilize information from the scene
v in E, U El. structure as provided by the extraction procedures to

Extraction procedures provide access to the informa- simplify formulas of T, eventually deducing ground in-
tion stored in the analogical structure for use by the stances of predicates in PA UPL that are consequences
sentential subsystem. To see why such access is neces- of Ms(T). These consequences are used to update the
sary, note that the diagram (1) and the sentence scene structures through application of the correspond-

Vz. INHALL(z, V) D TYPE(z, Office) (7) ing reflection procedures. In defining the two inferencerules, we use the notation o' to represent the expres-
jointly imply that both U2 and U3 are offices; this con- r
clusion cannot be deduced from (7) alone. This ex - sion a with all occurrences of the expression b replaced

ple illustrates the need for two-way flows of informa- by c.

tion between the sentential and analogical subsystems. 3.2.1 Evaluation The evaluation rule sanctions re-
In other words, assimilating sentential information into placement of ground instances of a predicate in PA UPL
analogical structures generally requires the extraction by either true or false, in accordance with the contents
of information from the analogical structures. of the scene structure. In the case where the struc-

As noted above, whole-scale translation of the ana- tures are incomplete and the relationship denoted by
logical structures into first-order sentences is infeasible, the predicate under evaluation is undetermined, the
Instead, we wish to provide access to the information in evaluation process has no effect.
the analogical structures on an as needed basis, whereby Definition 3.1 (Evaluation) Let 4 be a formula that
information is accessed as required for individual deduc- contains an instance R(ti,.. , tk) of a predicate R E
tion steps rather than all at once. The two key types PA U PL. If EVAL.R(t 1 , ... ,)h) = 0 where 0 E
of information stored within scene structures are ana- {"ruefalse} then evaluation of R(11 ,..., tk) in 0 yields
logical and label relationships for scene elements, and
closure information about those relationships.

For each scene predicate P(u, v), we require an ex- 3.2.2 Domain Enumeration The domain enu-
traction procedure EVAL.P(u, v) for evaluating ground meration rules allow the elimination of quantifiers in
instances in a scene S; the procedure behaves as follows certain cases through the introduction of an appropriate
for u, v E E, U E,: domain of values that covers the relevant instantiations

true if Ms k P(u, v) of the quantified variable. Consider the assertion
EVAL.P(u, v) a e otherws U, v) 3z . BES(z, U2 ) A OWNS(x, Cyril) (8)

unknown otherwise
relative to scene (1). The interpretation of this formula

Let P[A] represent an instance of a predicate in is that the scene element owned by Cyril is located be-
pL U PA that contains the single variable o, for exam- side U12. The conjunct BES(z, U2) limits the possibili-
pie, BES(z, Ui). To extract information about closure ties for this scene element; diagram (1) indicates that
relationships for a given scene S, we employ the pro- the element must be either U, or U3. As such, the for-
cedures CLOSURE+ .Ptx] and CLOSURE-.P[x], defined mula OWNS(U1 , Cyril) V OWNS(U3 , Cyril) follows from
as follows: (8). This derived formula and (8) are equivalent since

CLOSURE+.P[x] = {U1, U3} is the exact closure for BES(z, 1U2).
{e EE 1 U E, I m J= P[e] for some m E Ms) Similarly, consider the universally quantified formula

CLOSURE- .P[z] = {e E El U E, I Ms = P(e]) Vz. INHALL(x, V) D TYPE(z, Office) , (9)
which asserts that all elements in hallway V are offices.

With respect to the scene S, CLOSURE+.P[z] gen- This formula can be viewed as a statement about the
erates the set of scene elements that possibly sat- predicate TYPE(x, Office), with INHALL(z, V) serv-
isfy P[xr (called the minimal superclosure) while ing as a filter on the set of relevant instantiations of
CLOSURE-.Pfx] generates the set of elements that defi- the quantified variable. According to the scene (1), the
nitely satisfy P[z] (the maximal subclosure). The proce- only values that satisfy II\ IALL(z, V) are {Ui, U2, U3)}.
dures CLOSURE+.P[z] and CLOSURE-.P[zI give min- Thus, we can derive the conjunction TYPE(U1 , Office)A
imal upper- and maximal lower-bounds, respectively, TYPE(U2, Office) A TYPE(U3 , Office). In fact, this for-
for the exact closure for P[z], which is the precise set mula is equivalent to (9) since {U 1 , U2, 13) constitutes
of values for which P[x] is satisfied. In the case where the exact closure for INHALL(z, V).
the analogical structure determines the exact closure of We refer to the technique used above for folding
the predicate, that is, for every m1 , M2 E Ms(t): in closure information as domain enumeration for a

Ve E E, U Et. rn ý= P[e] = m2 k PIe) , quantifier.' For a given quantified formula, the occur-

the maximal sub- and minimal sun-rclosures are both rence of a predicate instance that both contains the

equal to the exact closure. 2The technique of domain enumeration derives from the



variable of quantification and has its closure determined expression needs to be retained for existentially quan-
by the analogical structure is not sufficient to guaran- tified formulas though, since by definition the superclo-
tee the applicability of domain enumeration. The for- sure may contain terms that are not in the exact closure
mula 3z. -,BES(z, U,)A TYPE(z, Closet) illustrates this (and hence do not satisfy the focus expression).
point. In this case, the closure for BES(z, U,) is not an The domain enumeration rule is formally defined as
appropriate restriction of the terms of C; elimination follows.
of the existential quantifier from this formula using the Definition 3.5 (Domain Enumeration) If V) is a
closure would lead to unsound conclusions. quantified expression, either 3z. a or Vz. a, contain-

For existential quantifiers, the domain used in ing a focus expression O[z] with maximal subclosure D-
domain enumeration must include all bindings for and minimal superclosure D+ then domain enumeration
which the embedded formula (e.g., OWNS(z, Cyril) A for v and O[z] yields:
BES(z, U2) in (8)) may have truth value true in or-
der to guarantee that all relevant instantiations of the V ('a) if 0 is 3z. a
quantified variable are covered. For universal quanti- dED+
fiers, the domain should exclude values for which the
embedded formula is already determined to have truth A dtU ift is VZ. a.
value true. We call a predicate instance whose exact dcD-

closure satisfies these conditions focus expressions for
the given quantified formula. In essence, a focus expres- 3.3 Example
sion prunes from consideration those bindings of a given We illustrate the workings of our integration rules by
quantified variable that do not provide useful informa- applying them to the scenario presented in Section 2.2
tion. To formalize the concept of focus expressions, we for the scene structure of (1). Consider first the fact
introduce definitions for the polarity and definiteness of that Paul's office is in hall H1, given by the for-
predicate instances in a formula. mula RESIDES(Paul, V). Rewriting using definition

Definition 3.2 (Polarity) An instance of a predicate (4) yields:
in a formula 0 is called positive if the instance maps to 3u. INHALL(u, V) A TYPE(u, Office) (10)
an unnegated literal in the conjunctive normal form of A OWNS(Paul, u) .
0 and is called negative otherwise. The predicate INHALL(u, V) is a focus expression in

Definition 3.3 (Definiteness) An instance of (10) and its exact closure in scene (1) is {U1, U2, U(3).
a predicate in a formula 0 is called definite if the in- Domain enumeration using this focus expression yields
stance maps to a literal in a clause of length one in the
conjunctive normal form of 0 and is called indefinite V TYPE(d, Office) A OWNS(Paul, d) . (11)
otherwise. dE{U, .,U3,U1

We will combine the notions of polarity and def- Scene (1) contains the information that U, and U3 are
initeness, referring to individual instances as nega- offices, thus TYPE(U1 , Office) and TYPE(U3 , Office)
tive indefinite or positive definite as appropriate. The in (11) can be replaced by true using the evaluation
expression INHALL(z, V) is a negative indefinite in- rule. In addition, since the diagram indicates that
stance in Vx. INHALL(z, V) D TYPE(z, Office) and Ralph owns U1, evaluation can be used to rewrite
a positive definite instance in 3x. INHALL(Z,V) A OWNS(Paul, UI) to false. These evaluations combined
TYPE(z, Closet), with tautological simplification produces

Definition 3.4 (Focus Expression) If 0 is a quan- TYPE(U 2 , Office) A 0WNS(Pau) , U2) (12)
tified formula containing a predicate instance P[z] then V OWNS(Paul, (3)

P[z] is a focus expression for 0 if either Similarly, from the formula RESIDES(Cyril, HI) we ob-tain the disjunction
* 0 has the form Vz. a and the occurrence of P[z] is

negative indefinite, OR TYPE(U2 , Office) A OWNS(Cyril, U2) (13)
* t has the form 3z. a and the occurrence of P[z] is V OWNS(Cyri), 13)

positive definite. Expansion of the contingent fact -,NBR(Ralph, Paul)

When applying domain enumeration to a universally using definition (3) gives

quantified formula Vz. a[z], the embedded formula a[z] Vz, y.-, ( (TYPE(z, Office) A TYPE(y, Office) A
need not be fully retained. Instead, the simplification OWNS(Ralph, z) A OWNS(Paul, y)
of a[z] in which the focus expression is replaced by true A BES(x, y) ) .
will suffice since the focus expression has truth value This formula contains the focus expression
true for all terms in any of its subclosures. The focus OWNS(Ralph, r) whose exact closure in scene (1) is

predicate-based generation method introduced in [8] for au- {UI); domain enumeration yields:

tomatically generating attachments to evaluate quantified Vy.- ( TYPE(Ul, Office) A TYPE(y, Office)
formulas. AOWNS(Paul, y) A BES(Vi, y) ) .



The expression TYPE(U1 , Office) evaluates to true in the framework extends the capabilities of traditional
the diagram; thus, we obtain perception systems.

Vy. -'TYPE(y, Office) V The given framework provides greater functionality

-.OWNS(Paul, y) V -BES(U 1 y) (14) than previous formalisms from the hybrid reasoning
community [4] through its capacity to reflect derived

BES(U1 , y) is a focus expression in (14) and its exact information back into the analogical structures. We are
closure is {U2); domain enumeration for BES(U1 , y) currently developing more general inference rules that
yields manipulate the scene structures directly in order to rea-

son hypothetically. Such inference rules provide a par-
-'TYPE(U2 , Office) V -OWNS(Paul, U2 ). tial solution to the incompleteness impasse described

This formula along with (12) jointly entail the conjunc- above. This research can be viewed as a computational
tion TYPE(Us, Offce)A OWNS(Paul, U3). The reflec- realization of Johnson-Laird's mental models [6) and
tion operators Ocanbeapplie) A o 0 he WNS(Pa u ns ofthe ree is similar in spirit to work in the Hyperproof [1] and
tion operators can be applied to the conjuncts of this WHISPER [5] systems, although tailored to the appli-
formula to create the scene structure: cto fpreta nepeaincation of perceptual interpretation.
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4 Conclusion
We have presented a formal hybrid framework for inte-
grating domain information expressed sententially into
the perceptual interpretation process and shown how
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Abstract

We present a theory of default reasoning that is specifically tar-
geted to causal domains. These domains encompass a wide variety of
current applications of default reasoning, but here we concentrate on
model-based diagnosis. The theory is unique in that it integrates a for-
mal notion of causality with nonmonotonic reasoning techniques based
on default logic and abduction. The main structure of the theory is a
default causal net (DCN) representing the causal connections among
propositions in the domain. The causal net provides a framework for
the two nonmonotonic reasoning techniques of assuming defaults and
generating explanations for observations, allowing them to be com-
bined in a principled way.



1 Introduction

Knowledge of causation is an important part of commonsense reasoning. We
use cause-and-effect analysis to understand everything from why we caught
the flu to how to make a video recorder save our favorite TV show. If cau-
sation is so ubiquitous in reasoning about and affecting everyday events, it
might also be a useful concept to employ in a formal theory of diagnosis. Sur-
prisingly, the best-known such theory, model-based diagnosis [Reiter, 1987],
does not. We argue in this paper that importing a formal notion of causation
into model-based diagnosis leads to a better theory, solving some significant
representational and inference problems.

What benefits can an explicit encoding of causation bring to diagnostic
theories? There are at least three possible areas:

* Problem structuring

* Explanations

* Computation

The first, problem structure, is the most important, and underlies the other
two. It is clear that in everyday reasoning we use the concept of cause and
effect to structure our interpretations of the observations we make, to under-
stand how events occur and how we can affect them. This representational
issue is the main focus of the paper, and just below we present an example
motivating our viewpoint.

The second item, explanations, is important whenever a diagnostic system
must communicate its results to an end user. In answering questions about
how a conclusion was reached, it is not acceptable for a system to state:

X is 13 and Y was 12 and the system equation predicts that Z
will be 18.

This kind of "explanation" will not be helpful: it does not give a user insight
into the domain in terms that he is familiar with, i.e., causal relations.

Finally, there are computational issues. By giving a structure to the do-
main, one that usually has a strong acyclic bias, causal relations can focus
the computational task. Some examples of the benefits that can result are in
the theory of Bayes nets [Pearl, 1988] and in using causal approximations to

2



lights were on

dead battery does not
start

turn key starts• " starts

Figure 1: Starting the car

physical theories [Nayak, 1992a; Nayak, 1992b]. Although we give some com-
putational methods at the end of this paper, these are mostly to touch base
with previous work in model-based diagnosis, and we have not yet explored
the computational ramifications of the theory.

To return to structural issues: it is important to understand that the
utility of the concept of causation depends to a large extent on our ability
to use defaults. Since the information available to us about any given sit-
uation is limited, we often must make informed guesses about the situation
in order to proceed with any causal inferences. Since this talk of causation
and defaults is very abstract, it will help to illustrate some of the issues in-
volved by considering the mundane example in Figure 1. The solid arrows
represent "normal" causal connections among the propositions. Turning the
key will normally cause the car to start; if the lights were on overnight, there
normally will be a dead battery. A dead battery means that the car will
not start. There are also other kinds of information present: a dead battery
blocks the causal relation between turning the key and starting the car. This
information is represented by the dashed line.

Now suppose we know that the lights were on overnight, and we turn the
key. What conclusions should we draw? One the one hand, we can argue
that the lights were on, so the battery should be dead, and so turning the
key will not start the car. This is the natural conclusion to draw; but there is
another one we might argue for. Suppose we start by assuming that turning
the key actually will start the car; then it can't be the case that there is a
dead battery, and so perhaps leaving the lights on did not affect the battery
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in the normal way. Both these arguments violate one normal condition: in
the first argument, the condition that turning the key normally starts the
car; in the second, that leaving the lights on drains the battery.

Intuitively, we accept the first argument because although the normal
condition for starting the car is violated, there is an explanation or excuse
for the violation: the battery is dead. To show this, we have drawn a dotted
line in Figure 1 connecting the proposition dead battery to the causal relation
between turning the key and starting the car. But there is no such excuse
for concluding that the lights being on did not drain the battery. We have
to invent a plausible account of how this might happen, which makes it a
less persuasive argument than its competitor. In the absence of additional
information, we conclude that the car will not start.

Suppose we learn that, after turning the key, the car did indeed start. Now
we can no longer accept the first argument, because it leads to a conclusion
we know to be false. The only other explanation of what occurred is the
second argument: something must have prevented the lights being on from
draining the battery.

This example illustrates some key principles of reasoning in causal do-
mains.

"* In domains where we have incomplete information, causal rei sons are
subject to default assumptions for their application.

"* Defaults that lead to conflicting conclusions occur frequently, and the
correct default can often be inferred from causal precedence among the
defaults.

"* Explanations for observations are generated by assuming various causal
hypotheses that could lead to the observations. The most natural ex-
planations are those that have the fewest unexplained violations of
defaults.

In the sequel we present a theory of causal and default reasoning that is based
on these three principles. It is important to note that the purpose is not to
develop a theory of causation itself by reducing it to other, more primitive
concepts. This is the goal of some philosophical theories of causation, e.g.,
Suppes [Suppes, 1970] defines causation in terms of conditional probabilities
of events, or Lewis [Lewis, 19731 in terms of counterfactual statements about
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possible worlds. Rather, we assume causation is a primitive relation among
events, and use it to structure arguments about what defaults should apply in
a given situation, and what conclusions we should accept. We call any theory
that unifies causal and default reasoning a causal default theory. There have
been other proposals to use causation in formal theories; perhaps the closest
to our approach is the use of causation in Bayes nets [Pearl, 19881. Our goal is
similar: to use causation as a structuring concept to guide the application of
a formalism that is, in effect, too general. Large probability distributions are
difficult to define in particular domains, and causation provides an abstract
view that structures the probability space with independence assumptions.
Analogously, we use causation to structure logical theories of defaults, fur-
nishing both a guide to the application of default reasoning, and a formal
system that functions at a useful level of abstraction.

There are two tasks that a causal default theory should address: predi-
cation and explanation. Prediction is the process of deriving the course of
events from initial conditions. Prediction is useful in many ways, for exam-
ple, in planning one's actions. What happens if I don't pay my telephone bill
on time? Knowing the consequences of this action can help decide whether
to perform it or not. Another way prediction is used is to set up expectations
in testing. An electronics engineer may apply an input to a circuit, expecting
it to generate a certain output if it is working correctly.

The second task is explanation: from observed effects, infer what could
have caused that effect. Typical here are applications such as plan recog-
nition and diagnosis of complex systems. In plan recognition, one tries to
infer the intentions of someone through observation of her actions: Why did
the train conductor ask if I had a passport? Understanding the relation of
actions to intentions is important in any cooperative task, and especially
in communication [Cohen et al., 1990]. Diagnosis is a similar kind of task,
except that one is trying to figure out possible explanations for a system
not behaving as expected: Why does the copier always jam when I put in
transparency paper? Finding the answer to this question can help in fixing
the problem.

Prediction and explanation are related. An explanation for an observa-
tion is a hypothesis H that, if true, would predict the observation. For a
causal explanation, the connection must be stronger: H must predict the
observation as a causal consequence.
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Given the importance of the concept of causation, it is perhaps surprising
that there is no explicit mention of causation in formal model-based diagnosis
(MBD) theories (e.g., [Reiter, 1987)). In MBD, the normal functioning of a
system is represented by a first-order theory SD. The interesting part of the
original version of MBD is that it is not necessary to state how the system
will fail. Given an observation of nonnormal behavior, a diagnosis is obtained
by deciding which components would, if working correctly, contradict the
observations, and hence must be broken. Later versions of MBD have added
more information about failure modes [de Kleer and Williams, 1989; de Kleer
et al., 1990; Struss and Dressier, 19891.

From a causal point of view, the system description SD is a set of con-
straints between the states of components of the system and its input-output
behavior, but it does not necessarily represent a causal relation. For exam-
ple, given the observation that the output of an inverter circuit is logical one,
MBD would predict that the circuit is functioning normally and the input is
logical zero; yet the output does not cause the input. As we argue in Sec-
tion 2, the lack of an explicit causal relation can be a drawback for current
theories of MBD.

There are some diagnostic theories that contain an explicit causal rela-
tion, mostly connected with medical domains. Many of thse are variants
of the set-covering model of Reggia et al. [Reggia et al., 1985], and often
involve a probabilistic component. However, these approaches generally do
not represent the normal function of a system, and are limited to expressing
causation by means of a simple relation between events, rather than using a
more expressive logical language, as we do here.

In this paper we present a theory that integrates causal and default rea-
soning within a first-order framework. Both the normal function of a system,
and full or partial information about its fault modes can be represented. The
main structure of the theory is a default causal net (DCN) representing the
causal connections among propositions in the domain. Default causal nets,
we claim, offer significant representational advantages over current formal
model-based diagnosis theories.

* DCNs distinguish between the strong explanation of the cause of an ob-
servation versus the weaker explanation of an excuse for the consistency
of the observation.

9 Partial fault models are allowed; information about fault modes can
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lead to stronger explanations, but complete information is not required.

e Preferences among explanations based on causal relations in DCNs can
yield better diagnoses than current model-based theories.

* Because it is based on abductive reasoning, DCNs admit causal influ-
ences that are neither normal or abnormal, but neutral.

Some of these advantages accrue because DCNs use an abductive approach
to explanation in diagnosis; others, especially the third, are a result of incor-
porating an explicit causal relation.

The theory of DCNs is introduced in Section 3, and their main properties
explored, including the relation to MBD. In Section 4 we examine proof meth-
ods for DCNs that are similar to the familiar methods for MBD, including
candidate generation and an ATMS implementation (all of the examples in
this paper have been solved automatically by this implementation, although
we have not tried to scale up to larger problems). Finally, we compare DCNs
to more recent abductive methods in MBD, and to other formal approaches
to causation that have appeared in the AI literature, and point out some of
the difficulties and extensions of our approach.

2 Model-based diagnosis

Here we discuss some of the limitations of MBD that could be improved
with the addition of a causality relation. We use the definitions of Reiter
[Reiter, 1987]. In Reiter's theory, a system is a tuple (SD, CMPS), where SD
is a first-order theory describing the system and CMPS is a set of component
names. The distinguished predicate ab is used to describe a malfunctioning
component.

Definition 1 A diagnosis for observations 0 relative to a system (SD, CMPS)
is a minimal set of components A C CMPS such that

SD U 0 U {ab(c) I c E A} U {-,ab(c) I c E CMPS - A)

is consistent.
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Figure 2: Three Bulbs Example

2.1 Excuses vs. explanations

Reiter's definition identifies a diagnosis as a type of excuse. Consider the
example of Figure 2 (adapted from [Struss and Dressier, 1989]). There are
three bulbs in parallel with a source. Let us suppose for simplicity that the
wires always behave correctly. The system description is:

-nab(s) A -,ab(b,) D on(b,), i = 1,2,3 (1)

If we observe that b3 is off, there are two diagnoses, {s) and {b3}. This is
intuitively correct, and we might be tempted to say that the abnormality of
s causes b3 to be off. But the formalism does not support such a view: there
is no prediction from ab(s) to bulb 63 being off, only the weaker excuse that
if the source is abnormal, it is not inconsistent that b3 is off. An explanation
of why N3 is off should involve a prediction from the hypotheses (i.e., the
diagnosis).

To see the difference between explanations and excuses in another way,
we add the observation that k is on. It is a curious fact of MBD that the
diagnoses do not change, although we might expect {s} to be dropped. But,
when the source is abnormal, the system description is consistent with any
state of the bulbs; hence, it is an excuse for the observations, even though it
does not explain why the second bulb is on (or why the third one is off).

There are several ways of getting rid of the unfortunate diagnosis. The
simplest solution is to add so-called "physical impossibility axioms" [Friedrich
et al., 1990]. For example, in the three bulbs case, the axioms:

-,(on(b,)Aab(s)), i=1,2,3 (2)
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are constraints that state a bulb cannot be on without a source of power. It
is easily checked that {s} is no longer a diagnosis for {on(b2), --on(b3 )}.

While the physical impossibility axioms are helpful, some problems re-
main in identifying diagnoses with excuses. First, all of the necessary axioms
must be included, and there are no guidelines for determining what they are.
For complex systems, it may be difficult to determine the physical impossi-
bility axioms, since we must enumerate all combinations of atoms that are
physically impossible. Second, the diagnoses are still excuses: as in the case
of {b3}, they make no prediction of the observations from hypotheses.

Another solution is to add fault models, the solution proposed by Struss
and Dressler [Struss and Dressler, 1989]. In this case, there can be a pre-
diction from a hypothesized abnormality to the observed behavior. For the
three-bulb example, appropriate fault axioms are:

ab(bi) D -on(b,), i = 1, 2,3. (3)

With this addition we can predict the observation -'on(b3) from the diagnosis

The inclusion of fault models brings MBD closer to a causal viewpoint.
but there are still problems and discrepancies. As we discuss in some detail
below, often we do not have full information about failure modes of a system,
and it is problematic to include partial fault models into MBD. And even if
full fault models are included, MBD does not generate causal explanations
or predictions.

In contrast, a causal theory offers a more reasoned approach to diagnosis,
simulating the intuitive process by which we arrive at the correct solution.
For the bulb example, we represent that the source normally causes b1 , b2,
and b3 to be on. In seeking to explain the observations on(b2) and -'on(b3),
the most normal explanation is that the source and b2 are working correctly
(thereby explaining causally why 62 is on), and that 63 is broken, thereby
excusing the normal causation of b3 being on. In this example, there is no
need for fault models or physical impossibility axioms: the process of finding
causal explanations and excuses generates the correct diagnosis.

2.2 Fault models, relevance, and neutral causes

As we have seen, fault models are necessary if observations are to be predicted
or explained, rather than excused. But there are some well-known problems
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with using fault models in MBD. The first is that partial fault models are
generally useless, as was pointed out in [de Kleer and Williams, 19891. A
partial fault model is one in which we have knowledge of some of the failure
modes of a component, but not all of them. Returning to the AND gate
example, suppose that ignoring the z input is only one way in which the gate
can fail; call this failure mode f(a). Then the system description becomes:

f(a) D 0 = y

f(a) D ab(a) (4)

"-ab(a) D o = x x y

Again observing o = 1 and z = 0, there is a diagnosis {a}. But since f(a) is
only one failure mode, it is not implied by ab(a), and no further predictions
can be made. Partial fault models are never used for inference, because there
is always the possibility of the component failing in some other, unknown
way. De Kleer and Williams [de Kleer and Williams, 19891 propose using
behavioral modes in place of abnormalities, that is, a component will have
a set of failure modes that are known and described with axioms (e.g., the
AND gate short in (4)), and perhaps an unknown mode with no description.
Diagnoses are combinations of normality assumptions and fault modes.

Whenever fault models are used, minimal diagnoses no longer cover the
set of all diagnoses for a system. This problem was noted and discussed in [de
Kleer et al., 1990], and we review it briefly here. As long as no fault models
are present, all occurrences of ab in the system description are positive (i.e.,
in axioms such as --ab(a) D o = x X y). In this case, a diagnosis A, which is
a minimal set of abnormal components, actually stands for or covers a whole
set of diagnoses, namely any superset of A. A is the relevant core of all of
these nonminimal diagnoses.

Adding fault models changes this picture, since supersets of a diagnosis
are no longer guaranteed to be diagnoses. Instead, in [de Kleer et al., 1990)
the rather cumbersome construct of kernel diagnosis is substituted, and the
compact covering representation is lost. More importantly, when there are
axioms relating abnormalities, as in Equation (6), MBD does not distinguish
the relevant failing components using either the original definition of diagno-
sis or that of kernel diagnosis. By relevant components, we mean those that
actually predict the observations; it may happen that only a subset of the
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components mentioned in a diagnosis are relevant in this way, while the oth-
ers are "side effects," and have no bearing on the observations. This problem
is highlighted in [Konolige, 1992], where it is shown to be inherent to the use
of excuses rather than explanations.

Another related problem is the representation of components that do not
have abnormal modes, i.e., a switch can be open or closed, but neither of its
states is "abnormal." We call these neutral causes, since there presence or
absence is unbiased in the system description. For example, the AND gate of
Figure 3 has two neutral causes, the input lines of the gate. The redefinition
of MBD in terms of kernel diagnoses in [de Kleer et al., 1990] moves in the
direction of allowing neutral causes, since the normal and failing modes of
a component are given equal status in diagnoses. However, there is still no
clear distinction between causes that have a normal or nonfailing mode, and
neutral causes, which do not have a preferred mode. Finally, if the system
description is complete, then neutral causes do not have to be represented at
all, since their status can be predicted from the state of the components.

The problems of partial fault models, relevance, and neutral causes can
be addressed by using an abductive method in place of consistency, so that
the observations must follow from the system description and a hypothesized
set of abnormalities. There are several approaches that differ in their details
[Console and Torasso, 1991; Poole, 1989; Poole, 1993; Dressler and Struss,
1992; Besnard and Cordier, 1993]. These abductive methods are similar to
the DCN framework (which also uses abduction); however, like consistency-
based MBD, they have no explicit concept of causation. As we show in
the next subsection, adding a causal relation leads to a better concept of
faults and diagnosis, especially in terms of preferences among predictions
and explanations. A detailed comparison of particular abductive methods
and the DCN approach is in Section 5.

2.3 Causes vs. correlations

In MBD, it is tempting to differentiate the stronger concept of explanations
from excuses by taking them to be diagnoses that imply the observations,
as can be done when fault models are present. But although a fault model
might predict a proposition, it does not necessarily give a causal explanation
for the proposition. To see this, consider the simple AND circuit diagrammed
in Figure 3. Assume that the only possible fault causes the input on line z
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Figure 3: AND Circuit

to be ignored, so that the output and y are equal. The normal and fault
axioms are:

ab(a) D 0= y (5)

-'ab(a) D o = x x y

Now suppose we observe the output at 1 and x at 0. There is only one
diagnosis, {a}, and from this we can predict that y = 1. So y is correlated
with o, and we can use this information to make predictions; but it would be
incorrect to say that this is a causal explanation for y's value, since we know
that y is an input to the device.

One might be tempted to say "so what?" at this point: is it critical to
differentiate causal explanations from mere correlations in a technical theory?
Our answer is yes, given the importance of causal precedence that we pointed
out in the Introduction. When default assumptions are part of diagnostic
reasoning, causal relations play a key role in ranking competing predictions
and hence diagnoses.

Example 1 This is strictly a prediction problem, the car example from Fig-
ure 1. In MBD, the system description is:

k A -ab(1) D s
k Ad D -,s (6)

l A -ab(2) Dd

d D ab(1)

where k is turning the key, I is the lights were on, s is the car starting, and
d is the battery being dead. Assume that 1 and k are known to be true, and
consider them as initial conditions rather than observables to be explained.
What does MDB predict in this case? Since it is impossible for both ab(1)
and ab(2) to be false, there are two diagnoses: {f} and {2}. Only the first
of these corresponds to a causal prediction.
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Example 2 This is a diagnosis example from the circuit domain. A circuit
containing two inverters and an AND gate is diagrammed in Figure 4. The
two inverters are coupled so that whenever b's output is at 1, it causes a to
become shorted. The system description is:

-nab(a) D x' = 1 - x

-,ab(b) D y' = 1 - y

ab(a) D x = '(7)

ab(b) D y = y'

yI= 1 D ab(a)

"-,ab(c) D z = x' x y'

Suppose that initially it is known that x = 0 and y = 0, and it is observed
that z = 0. The most likely diagnosis is that b is functioning normally, and
this caused y' = 1 and hence the fault in a. _74 ct.. _ be that b is faulty, but
given low initial likelihood of a fault on its o..a Pi preferred explanation is
that b is functioning normally.

There are two diagnoses, {a} and {b}; the axiom y' = 1 D ab(a) does
not differentiate them. This is because it states a correlation between y' and
ab(a), rather than a causal relation. Rewriting it using the axiom --ab(b) D
y' = 1 - y, we get:

y = 0 A -,ab(b) D ab(a),

which in turn can be written as

y = 0 -'ab(a) D ab(b).

The symmetry between ab(a) and ab(b) is clearly evident.

In both these examples, causal precedence arises when the normal func-
tion of one component causally entails an abnormality in another one. Writ-
ing this entailment using material implication, as is natural for the system
description in MBD, does not produce the intended effect, because the im-
plication is invertible:

"-ab(a) D ab(b) = -,ab(b) D ab(a).

A causal relation between these two would not be invertible.
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Figure 4: Two inverters and an AND gate

One extension to MBD permits preferences among the defaults (Junker,
1993; Dressier and Struss, 1992]. In this case, the correct diagnosis could
be generated by assigning -'ab(b) a higher priority than -'ab(a). However,
this priority does not represent a causal connection, and is inappropriate in
other situations, e.g., if the input to b is 1. To haive the effect of causal prece-
dence, a diagnostic theory must explicitly code the causal relation between
propositions.

2.4 Physics and causation

Physical laws, such as conservation of energy or Newton's law relating force,
mass and acceleration, are written in terms of equations among state vari-
ables. Causation is not a fundamental concept, although it is often used to
explain or understand physical systems. For example, Newton's law F =ma
says nothing about whether force causes an acceleration. Yet this is typically
the way we design systems, since it is usually easy to change the force that
is applied (by changing the power to a motor, for instance). The force be-
comes an exogenous variable in the equation, one that can be independently
controlled, and so the direction of causation is taken to be from force to
acceleration. There is nothing fundamental in such a choice; if there were~
a device that controlled acceleration, acceleration might be considered the
exogenous variable.

In designed systems, the choice of exogenous variables, and hence the
causal structure, is part of the design. Digital circuit devices are a good
example. An AND device is designed so that by changing the inputs, the
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output is made to vary. We can thus say that the AND gate, in normal
operation, causes its output to be a boolean function of the input. An internal
fault can change the function: for example, if there is an internal short, the
output may take on the value of one of the inputs. In this case, the causal
view of the device is unchanged, even though its functioning is abnormal.

One objection to the use of causal models in diagnosis is that they may
not satisfy a modularity property, often stated as the slogan "no function
in structure" [Davis and Hamscher, 19881. In the practice of MDB, a sys-
tem is composed of subsystems that have their own descriptions; the system
description is generated by taking the union of all subsystem descriptions,
and adding some axioms describing the connections between them. There
is no reason this same modularity technique could not be used with causal
models. Every subsystem would contain its own causal and correlational
axioms, normal conditions and primitive causes. In addition, there would
be information about the I/O behavior of the subsystem: which variables
are subject to be changed by outside events (the input variables) and which
are determined by other variables of the subsystem (the output variables).
Causal subsystems would be hooked together in the same way as modules in
the MBD approach, with the additional constraint that the I/O behavior of
the subsystems must be respected.

However, there may be faults in which the causal view is undermined
because the design parameters are exceeded. For example, if the output
of a gate is loaded by too much fanout, then it may become stuck at zero,
violating the intended behavior of the device. In this case, it is not an internal
abnormality of the AND gate itself, but a violation of the design conditions
under which the output is a function of the input. There are two ways to
cope with this situation. One is to explicitly encode design violations using
another set of causal rules. The drawback here is that these rules violate
the object-centered nature of modeling devices because they arise from an
interaction among the components.

Another method would be to model the device at a finer level of detail.
Instead of using gates as components, the gates themselves would be modeled
as collections of smaller components (resistors, transistors, etc.) together
with the voltage and current relationships among them. This representation
is more "physics-like," so that Kirchoff's and Ohm's laws apply, giving a
complete equilibrium description of the device.

Like causal descriptions, physical descriptions also have contexts under

15



which they are appropriate. Actual resistors are not perfect, and there may
be noise or dynamic effects in the circuit, violating the conditions for appli-
cation of Kirchoff's and Ohm's laws. A finer level of description is possible
at the atomic level, taking into account the material composition of the de-
vice and the flow of electrons. And so on, down to the best current physical
theories at the quantum level. The point is that physical descriptions are
abstractions from reality, ignoring some details and valid only within a lim-
ited context. Note that by adding more detail, more types of faults can be
analyzed using physical laws; concomitantly, the complexity of description
increases and the diagnosis problem becomes harder. A causal view might
still be appropriate when the conditions of physical analysis are violated, and
going to a finer level of detail would be too costly.

Generally speaking, causal descriptions are useful at higher levels of ab-
straction, especially when the intended functional dependence is known from
design. This is not to say that causal models are incompatible with physical
models. In the DCN theory, they coexist, with the physical description mod-
eled as a set of statements about correlations. At higher abstraction levels,
causal models are useful in directing and focusing the search for diagnoses,
and in producing understandable explanations. And when full physical mod-
els are not available, causal models may be the best way to formalize the
behavior of a device.

3 Default causal nets

Default causal nets (DCNs) are a formal structure that encode the concepts
of causation, correlation, and defaults. They consist of a causal theory R,
a definitional theory D, and a correlation or integrity theory I. In addition
there are distinguished sets of propositions C (the primitive causes) and N
(the normal conditions). The term "net" is used in analogy with Bayesian
nets, because the main structuring concept is the causal relation embodied
in R.

Definition 2 (Default Causal Net)
A default causal net is a tuple (R, D, I, C, N), where R is a Horn theory, D
and I are first-order theories, and C and N are disjoint sets of atoms.
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3.1 Causation

Formally, we understand causation to be a primitive relation among proposi-
tions. By "primitive" we mean that, as far as DCNs are concerned, the cau-
sation relation is part of the parameterization of the net, and is not derived
from any other concepts. This is unlike the approach of Shoham [Shoham,
19871, for example, in which a theory of causation is developed by reducing
it to other concepts. Our approach leaves unanswered questions about how
to identify causation in a given domain, the relation of causation to time,
and various other difficulties about the nature and properties of causation.

In Section 6 we return briefly to these questions to point out some dif-
ficulties of the theory; here we give the most basic (and hopefully noncon-
troversial) properties. These properties suffice to develop the main features
of DCNs; further investigations will have to confront some of the harder
problems.

To represent the causal relation, we use a definite clause theory R over a
first-order language £. This theory consists of a set of implications

a"..an D b.

where each of ai and b is a ground atom of L. If A is a set of propositions,
then we say that an atom b is caused by A if there is a proof of b from A in
R; we write this as A FR b. A is a minimal cause for b if there is no other
cause A' for b such that A' C A.

Example 3 A variation of the 3-bulb example is diagrammed in Figure 5.
There is a switch that can be either open or closed. For each of the other
components cj, the proposition ok(ci) means that the component is working,
and ab(ci) that it is broken. The theory R is:

closed, ok(s), ok(wi),ok(bi) D on(b1 )

closed, ok(s), ok(wj), ok(w 2), ok(b2) D on(b2)

closed, ok(s), ok(wi), ok(w 2), ok(w3), ok(bs) D on(b3 ) (8)

open D off (bi)

open D off(b2 )

We have not listed any fault models, although we could. Here is a partial
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Figure 5: Three Bulbs with a Switch

fault model that we will use in some examples.

ab(bi) D off(bi) ab(b2 ) D off (b 2)

ab(wi) D off (bi) ab(W2) D off (b2) (9)

The partial fault model is also part of the relation R, since it represents
causation in the abnormal functioning of the device. The primitive causes C
are { open, closed, ab(4i)}.

Note that, unlike model-based diagnosis, there can be causes other than
the normal or abnormal functioning of a component. This is useful in rep-
resenting neutral situations, e.g., the switch is not normally either closed or
open, but can be hypothesized as either in order to explain the observations.
The propositions ok(x) are not listed as primitive causes; they are normal
conditions, explained below.

The important part of the causal relation is that it captures the functional
dependence of the domain variables. If we want to turn b, on, then we can
close the switch and make sure that a, wl, and b1 are working correctly. On
the other hand, we cannot make b, be on as a means of causing the switch to
close. Of course, if we observe k) to be on, then we can 'infer that the switch
is closed; but it is not possible to plan to change the position of the switch by
the primitive action of making the bulb be on. This illustrates the difference
between a causal relation and a merely correlational one. Unlike material
implication, the causal relation is asymmetric and does not contrapose: given
that c causes d, it is not necessarily the case that -'d causes -'c. Deduction
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in a definite clause theory is one way to represent the asymmetric causal
relation.

3.2 Definitions and correlations

Besides causation, there are other types of relations connecting proposi-
tions. Definitional information relates propositions that have defined rela-
tions within a domain, e.g., "a 40-watt bulb is a type of bulb" or "abnormal
is the opposite of normal." Definitions can obviously interact with causa-
tion, since from "a broken 40-watt bulb caused the problem" we can infer
"a broken bulb caused the problem." For our purposes, we limit definitions
to information about complementary propositions. Definitional relations are
represented by a first-order theory D; for the bulbs example of Figure 5, it
contains the propositions:

open =--closed
ab(cq)_---ok(cj) (10)

on(b)=-'-off (bi)

If p -D -,q, then we say that q is the complement of p, and write it as •.
Information about co-occurrences is another form of non-causal informa-

tion in a domain, e.g., "Whenever I clean my car it rains." Correlations can
be used to make predictions, but do not contribute to causal explanations.
Correlations are represented by a first-order theory I (for integrity theory).
All causation and definition relations are also correlational. We enforce this
restriction by demanding that R C I and D C I.

Example 4 Continuing the bulbs example, suppose we know that whenever
b, is off and is not broken, the other bulbs must be off too. We represent this
as

off(bi) A ok(bi) D off(b2 ) A off(b3) E I (11)

Correlations may come from many different sources. As in the case of this
example, there may be underlying but unknown causes that link together
several propositions. Or we may have experiential knowledge that is the con-
verse of causation: whenever the road is wet, it normally rained the previous
night.
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A proposition q is correlationally inferred from a set of propositions A if
it follows logically from the correlational theory and A; we write A F-1 q. For
example, off(b2 ) is inferred from A = {ok(bi), off (b/)} in the above example,
but it is not caused by A. If A causes q, then it also infers q, since R C I.
Note that, unlike the case with the causal relation, the material conditional
can be used in for "backwards" inference, e.g., if on(b 2) is true, we can infer
that one of ab(bi) or on(b/) is true by using the contrapositive of Equation
(11).

3.3 Normal conditions

Normal conditions are propositions that are normally assumed to hold. They
generally represent either the normal functioning of a component, or a com-
plex set of conditions, e.g., "if the key is turned and everything is normal,
the car will start." Formally, normal conditions are a set of ground atoms N
that are not primitive causes. Primitive causes are hypotheses that incur a
cost to assume; normal conditions are "free" and assumed to hold by default.

Example 5 Continuing the bulbs example, we let the set of normal condi-
tions N = {ok(ci)}. In this case, the normal conditions just describe the
correct functioning of the components. We can define other types of nor-
mal conditions, for example to relate causation among abnormal components.
Suppose that normally when b1 is on, it causes b2 to fail. We would write:

n A on(bi) D ab(b2 ) (12)

as part of the causal theory R, where n E N is a new proposition reflecting a
normal causal relation between b1 and b2 . As we will show later, such causal
relations can be used to specify priorities among explanations.

Identifying normal conditions is the key to default reasoning in causal
theories. We seek to explain a set of observations by hypothesizing causes
that are as "normal" as possible, that is, conflict with the fewest normal
conditions.

It is helpful to view the causal relation and normal conditions as a directed
graph. For example, the normal functioning of the bulbs with the switch
closed (Equation 8) and the failure mode just given (Equation 12) can be
diagrammed as in Figure 6. The arrows show the causal connections among
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ok' oonb1)

dosed/

ok(b2)
closed - on(b2)

ok(b3)

dosed oo(b3)

Figure 6: Causal Directionality

propositions, annotated with their normal conditions (for simplicity we have
omitted some irrelevant normal conditions). The circled arrow indicates that
bulb 1 being on is the cause of an abnormal condition with bulb 2. The
causal directionality is clear from the diagram.

The choice of what conditions are assumed to be "normal" or part of
the causal background is an important part of the information provided by
the application developer. Depending on the task and the level of expertise

of the developer, very different choices could be made, even in the same
domain. For example, a typical driver might infer that turning the key
causes the car to start, given the normal condition that the car is ok. A
car mechanic might have a more detailed causal view: turning the key and

having a charged battery causes the car to start, assuming the starter motor
is working correctly.

3.4 Explanations

We now have all of the elements necessary to develop the inference operation
of explanation within DCNs.

Definition 3 (Explanation)
An explanation for an observation set 0 is a set of causes and normal

conditions A C C U N such that A ý-R 0 and A U 0 V I.

Example 6 To illustrate the concept of explanation, we consider the bulbs
theory containing the normal causal rules (8) together with the fault model
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(9). The fault model is necessary to provide interesting explanations of non-
normal behavior. Suppose we make the observation that bulb b, is not lit:
off (b1). There are several explanations for this proposition.

open, ok(s), ok(k), ok(wi)

closed, ok(s), ab(bk)

etc.

There are usually many explanations for a given observation set, and we seek
intuitively preferred explanations. To find these, we filter all explanations by
a two-step process.

1. Normal explanation: those explanations that satisfy a maximal set of
normal conditions.

2. Ideal explanation: normal explanations that have a minimal number of
primitive causes.

The concept of a normal explanation is complicated by the presence of cau-
sation. An abnormal condition may be caused by the explanation; when this
happens, we say that the normal condition is exempted. A normal explana-
tion should either consistently include or exempt as many normal conditions
as possible. Here we are using the concept of causation to structure the de-
faults. If a normal condition is not contained in an explanation, it counts
against the explanation, unless the corresponding abnormal condition is ex-
empted.

Definition 4 (Adjunct)
Let A be an explanation for observation set 0. The adjunct of A is a set of
normal conditions defined as follows.

9 If the complement 7 of a normal condition z is in A, then z is in the
adjunct.

e If a normal condition r is not in A, and A VR 7, then x is in the
adjunct.

A normal explanation for 0 is one whose adjunct does not strictly contain
the adjunct of any other explanation for 0. An ideal explanation is a normal
one that is subset-minimal in the primitive causes.
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Example 7 As in the previous example, consider the bulbs theory (8) to-
gether with the fault model (9). Again, if we make the observation that bulb
b, is off, we have several candidates for normal explanations:

Explanation Adjunct

ok(s), open, ok(wl), ok(bi) ... none

ok(s), ab(wl), ok(b 1) .-. . ok(wi)

ok(s),ok(wl),ab(bi)... ok(bi)

Of these, the minimal adjunct is the first. This is the normal and ideal
explanation of off(bi): the switch is open, and all components are normal.

This example illustrates one property of normal explanations: as many nor-
mal conditions are assumed to hold as possible. The switch can be either
open or closed; if we assume that it is open, then we have an explanation for
b, being off that is consistent with the normal functioning of the circuit. Any
other explanation will force us to assume that some component is functioning
abnormally. So, normal explanations consist of a set of primitive causes that
explain the observations, and at the same time respect our ideas about what
normally occurs as much as possible.

In this example, there were no interesting causal relations between nor-
mal conditions. In the definition of adjunct, we used the principle of causal
exemption: if an abnormal condition is caused by the hypothesized explana-
tion, then it is exempted from consideration in finding the "most normal"
explanation. The following example illustrates this point.

Example 8 Consider the same fault model as in Example 7 with an initial
condition closed and the additional causal rule (12): n A on(bl) D ab(b2).
There are several candidates for normal explanations of {off(b 2)}:

Explanation Adjunct

n,Ok(s),Ok(WI),Ok(bi),ok(W2 )... none

n, ok(s), ok(wi), ok(bi), ab(w2)... ok(w2 )

ok(s), ok(wi), ok(bi), ok(w 2), ab(b2) ... ok(b2), n

etc.
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Of these, the first is the only normal explanation, and hence ideal. The reason
it has an empty adjunct is that the normal conditions and closed cause on(bi),
which in turn causes ab(b2 ), exempting the normal condition ok(b2). Every
other explanation violates at least one normal condition without exempting
it. This makes intuitive sense: if the switch is closed, we expect b, to be on,
causing b2 to be broken and off.

This example illustrates how directionality in the causal relation is impor-
tant in producing causal preferences among explanations. Referring back to
Figure (6), it is easy to see from following the causal arrows that closed,
ok(bi) and n axe a cause of ab(b2 ). On the other hand, closed and ok(b2)
are inconsistent with n and ok(bl), but they do not cause the complement of
either of these normal conditions.

3.5 Excuses

One problem with causal explanations is that they always require a causal
model that infers the observations. Without the partial fault model of Equa-
tion (9), for example, there are no explanations for why the bulbs are off when
the switch is closed. In many cases, it may not be possible to find a causal
explanation for all the observations, given a causal theory with incomplete
fault models. In this situation the weaker concept of an excuse (discussed in
Section 2.1) might be appropriate. By hypothesizing primitive causes, the
normal state of the system can be changed so that it no longer conflicts with
the observations.

Definition 5 (Excuse)
An excuse for observations 0 is a set of causes and normal conditions A C

CUN such that AUO /i 1.

Excuses are like explanations, except there is no necessary causal relation to
the observations. The following fact is obvious when the two definitions are
compared.

Fact 1 Every explanation of 0 is an excuse for 0, but not necessarily the
converse.

Normal and ideal excuses can be defined in exactly the same manner as
for explanations. Note that, although we do not use the causation relation
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to infer the observations, we still use it to give preferences on the normal
conditions present in excuses, in exactly the same manner as for explanations.

With excuses, we do not need to define fault models in order to "excuse"
a set of observations. Excuses are useful precisely in those cases where we
do not have enough information to make a predictive fault model; all we
know is that some component is faulty, and we no longer can predict that
the behavior of the system is at odds with the observations.

Example 9 Consider the simple bulbs theory from Equation (8), without the
clauses for open. There is no explanation for off (b1), but there are several
excuses:

Excuse Adjunct

ok(s), ok(wi), ok(bi) ... none

open, ok(s), ok(wi), ok(bt) ... none

closed, ok(wi),ok(b1 ) ... ok(s)

closed, ok(s), ok(b1 ) ... ok(wi)

etc.

The first two of these are normal excuses because they have minimal adjuncts.
Of these, the first is ideal, because it does not have any assumed primitive
causes. Note that it is unnecessary to assume open as a hypothesis, since it
is predicted by the observations and the ideal excuse.

As we pointed out in Section 2.1, excuses are the idea behind Reiter's
model-based diagnosis method [Reiter, 1987]. In fact, we can show that
his concept of diagnosis is exactly the concept of an excuse with no causal
knowledge. Recall that, in Reiter's theory, a system is a tuple (SD, CMPS),
where SD is a first-order theory describing the system and CMPS is a set of
component names. In DCN terms, the system description corresponds to the
correlational theory, the abnormalities are primitive causes, and their com-
plements are normal conditions. The causal relation is empty; according to
our analysis, Reiter's theory does not distinguish causation from correlation,
all relationships are treated as correlations. In this case there are simpli-
fications in the DCN: the adjunct of an excuse A is just the set of normal
conditions not in A, and a normal excuse contains a maximally consistent set
of normal conditions. We can show that normal excuses are exactly Reiter's
diagnoses.
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Fact 2 (Model-based diagnosis)
Let (SD, CMPS) be a system. Construct a corresponding DCN as follows:

R=0

I SD

D = {ab(c) - 'ok(c) I c E CMPS}

C = {ab(c) Ic E CMPS}
N = {ok(c) c E CMPS}

Then A is a diagnosis of 0 with respect to (SD, CMPS) if and only if {ok(c) I c E
CMPS - A} is a normal excuse for 0 in the corresponding DCN.

Proof. Assume that A is a diagnosis of 0. Then {-,ab(c) I c E CMPS - A}
is a maximal set of normal predicates consistent with SD. Therefore,
from the definitional theory, {ok(c) I c E CMPS - A} is a maximal set
of normal conditions consistent with I, and since the causal relation is
empty, this is a normal excuse.

In the other direction, assume X is a set of components such that
{ok(c) I c E X} is a normal excuse for 0. Again from the definitional
theory, {-fab(c) I c E X} is a maximal set of normal predicates con-
sistent with SD, so that CMPS - X is a minimal set of abnormality
predicates consistent with SD.

Because the model-based theory does not have a causation relation, causal
exemption and preferences are not possible. Let us reconsider Example 8, in
which the switch is closed and the observation is off(b2). Now assume that
the causal rules (8) and (12) are purely correlational, and the causal theory
is empty. Then we have the following excuses for off (b2 ):

Excuse Adjunct

n, ok(s), ok(wI), ok(bi), ok(w 2)... ok(b2)

ok(s), ok(w), ok(bl), ok(w2 ), ok(b2 ) ... n

n, ok(s), ab(wl), ok(bl), ok(w2), ok(b.2) ... ok(wi)

etc.
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These are all normal excuses. Either bulb b2 is broken, or the normal con-
nection between b1 and b2 doesn't hold, or wire w, is broken. The correct
causal solution is the first one, but it cannot be distinguished from the other
excuses without causal precedence.

A quick look at the relation of DCNs to MBD reveals that primitive causes
and normal conditions are linked in the way that we criticized in Section 2.2.

To the extent that a DCN relies on excuses in inferring diagnoses, it is
subject to many of the same criticisms made against MBD. Still, these criti-
cisms are blunted somewhat because of the greater expressiveness of DCNs.
Causal preferences can still operate even for excuses, if the causal relation
is not empty; and we can make distinctions between normal conditions and
primitive causes. Furthermore, it is often possible to mix explanatory and
excusing components in the same diagnosis, as we show in the next section.

3.6 Lenient explanations

Excuses are weaker than explanations, and we seek explanations whenever
possible, as being more informative. While there may be no explanation that
covers every member of an observation set 0, it may be possible to find an
explanation for a subset of 0, while excusing the rest.

Definition 6 (Lenient explanation)
Let 0' C 0 be a maximal subset of 0 for which an explanation exists. Then a
lenient explanation for 0 is a set of causes and normal ,onditions A C CU N
such that A is an explanation for 0' and an excuse for 0 - 0'.

Obviously, if 0 has a causal explanation, all lenient explanations are explana-
tions. As with ordinary explanations and excuses, we can define the concept
of a normal lenient explanation and ideal lenient explanation.

Example 10 This is the original bulb example cited in the Introduction; its
causal relation is given by Equation (8), with the proposition closed assumed
as an initial condition.

Suppose we observe that bulbs one and two are off, and bulb three is
on (0 = { off (bi), off (b2), on(b3)}). There is no explanation for off (N1 ) and
off (b2), but there is for on(b3). So any lenient explanation of 0 will include
{ok(s), ok(wl), ok(w2 ), ok(w3), ok(b3)}. In fact this is the only explanation,
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since adding either ok(bi) or ok(b2 ) will contradict the observations. It is
lenient, normal, and ideal.

Looking at the simple excuses for 0, we get the following normal ones:

1. ok(wi), ok(w 2), ok(wa), ok(bi), ok(b2), ok(b3 )
2. ok(s), ok(W2 ), ok(w3 ), ok(bi), ok(b2), ok(b3)

3. ok(s), ok(wl), ok(w3 ), ok(b2), ok(b3 )

4. ok(s), ok(wi), ok(w 2), ok(w3 ), ok(b3)

Each of these corresponds to a maximal set of normal conditions that does
not infer on(bi) or on(b2) or off (b3); but only the last one corresponds to the
correct causal explanation.

The lenient ideal explanations (LIEs) of an observation set are the ones we
usually want. However, this relies on the causal model being complete for the
observations. Suppose g is a member of 0, and there is a causal explanation
for g. If g is explained in every lenient explanation, it may conflict with
reasonable excuses for other members of 0 (see [Console and Torasso, 19911,
Section 6). Lenient explanations place a premium on causal explanations.

In summary, LIEs are generated by the following steps:

1. Find the lenient explanations of 0.

2. Of these, choose the ones that have a minimal adjunct.

3. Of these, choose the ones that have minimal nonnormal causes. These
are the lenient ideal explanations of 0.

4 Computational methods

We develop some computational methods that can be applied to generate
LIE's for an observation set. These methods are similar to the minimal
conflict methods of diagnostic theories [de Kleer et al., 1990; Reiter, 1987].
We use the XOR function circuit diagrammed in Figure 7 as an example.
There are three gates, a, b, and c, with two inputs (i, j) and one output (o).
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Figure 7: An XOR Circuit

The atoms i, j, o, z and y stand for circuit logic levels, so that i means input
i is one, i that it is zero. We have the following causal relation R:

i, ok(a) D z z,y, ok(c) D o Z,j, ok(b) D V

j, ok(a) D x ",ok(c) D U i, ok(b) D y (13)

i,j,ok(a) D i V,ok(c) D6 j,ok(b) D Y

ab(a) D 7 ab(c) D U ab(b) D V

The only explicit fault mode is that when a gate fails, its output is stuck at
zero. The normal conditions are N = {ok(a), ok(b), ok(c)}. The primitive
causes are C = {i,Yj, ,ab(a),ab(b),ab(c)}.

4.1 Minimal conflicts and regular explanations

The first step is to consider compact ways to represent normal causal expla-
nations. One idea is to just consider explanations that are subset minimal,
which is a large reduction in the search space. Normal explanations are not
minimal in this sense; nevertheless under certain circumstances we can rep-
resent all normal explanations as a combination of a minimal explanation
and a maximally consistent set of normal conditions.

We will use only a single atom as the observation; an observation set 0
can be accommodated by using a new atom g, and adding the causal rule

ol A...Ao, Dg,

and taking f as the single observation.
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Recall that the adjunct of a explanation A for g is the set of normal
conditions that are not exempted by A or whose complement is in A. The
exemptions are a complicating factor, since they may introduce causes into A
that have nothing to do with the derivation of g. Let us call an explanation
A asserting no exemptions a regular explanation. We first develop methods
for regular explanations.

The adjunct of a regular explanation A has every normal condition not
contained in A. The adjunct of A is written as adj(A). Let us define an
extension of an explanation A as A together with a maximally consistent set
of normal conditions. A minimal explanation A is one that is subset-minimal
over all explanations.

It is useful to represent explanations by their essential elements, i.e., the
ones that explain g.

Definition 7 Let A be an explanation for g. A core of A is a subset A' of
A such that:

1. A' is a minimal explanation of g.

2. There is some extension E of A' such that adj(E) = adj(A).

A core of A represents A in the sense that it can be extended to an explanation
with the same adjunct. Given this, we can find all normal explanations of
g (assuming they are regular) by first constructing a set of explanations E
containing at least the core of every normal explanation, and then selecting
the subset p(E) whose elements have a minimal adjunct.

We first show that the set of minimal explanations covers the cores of
all normal explanations. For regular, normal A, every minimal explanation
contained in A is a core of A.

Fact 3 For every explanation A there exists a minimal explanation A' C A.
If A is regular and normal, then A' is a core of A.

Proof. It is obvious that A embeds a minimal explanation. To find one,
just keep discarding elements of A until the ones left are necessary for
deriving g.

Let X be the set of normal conditions (A - A') nl N. Assume that A is
regular and normal; then A' is also regular. If X U A' is an extension
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of A', then we are done, because adj(X U A') = adj(A). So suppose
the X U A' is not normal, and there is another condition n E N that
can be consistently added to it. But then A cannot be normal, because
adj(X U A'U {n}) C adj(A), contradicting the original hypothesis.

This result is encouraging. It suggests that we can find normal (regular)
explanations for g by looking at its minimal explanations and comparing the
adjuncts of their extensions.

Example 11 We consider the XOR circuit with axioms (13), plus the addi-
tional fact that if c fails, so does one of a or b:

ab(c) D (ab(a) V ab(b)) E I.

Note that there will be no causal exemptions, because no ab predicate appears
in the head of a clause of the causal relation. Thus all explanations will be
regular.

Assuming j and i as initial conditions, there are three minimal explana-
tions of U. We list these with the normal conditions of their extensions.

Minimal explanation Extension

1. ab(c) ok(a)

ok(b)

2. ab(a), ok(c) ok(c), ok(b)

3. ab(b), ok(c) ok(c), ok(a)

It is easy to check that the normal explanations are the extensions of 2 and
3.

Using Fact 3, we next show that all normal explanations can be found by
comparing the adjuncts of minimal explanations.

Fact 4 Suppose all the normal explanations of g are regular. Let E be the
minimal explanations of g, and p(I,) the subset of E with minimal adjuncts.
The elements of p(E) are exactly the cores of all normal explanations of g.
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Proof. From Fact 3 we know that the core of every normal explanation must
be in E. Since no explanation can have an adjunct properly contained
in those of a normal explanation, every member of p(E) must be the
core of some normal explanation.

From this result, we need only compare the adjuncts of the minimal ex-
planations for g in order to find the normal ones.

Example 12 Considering again the XOR circuit with the added correlation
of example 11, and assuming j and i as initial conditions, we list the adjuncts
for each of the three minimal explanations of"6.

Minimal explanation Extension Adjunct

1. ab(c) ok(b) ok(c),ok(a)

ok(a) ok(c),ok(b)

2. ab(a),ok(c) ok(b),ok(c) ok(a)

3. ab(b),ok(c) ok(a),ok(c) ok(b)

Explanations 2 and 3 have minimal adjuncts, so they are the cores of the
normal explanations of U.

One way to compute the adjuncts of the minimal explanations of g is to
use the method of minimal conflicts and candidates [de Kleer and Williams,
1987; Reiter, 1987]. If there are many normal conditions, minimal conflicts
are usually a much more efficient means of finding the adjuncts of a minimal
explanation than enumerating its extensions.

The definitions follow closely those of [de Kleer and Williams, 1987;
Reiter, 1987], but are relativized to a given causal explanation. A mini-
mal conflict for an explanation A is a minimal set of normal conditions that
is inconsistent with A U I. A candidate for A is a minimal set that contains
at least one element from each minimal conflict (candidates are called hit-
ting sets in [Reiter, 1987]). The candidates of A can be generated from the
minimal conflicts of A by picking one element from each minimal conflict. If
A is regular, we can show that the candidates of A are just the adjuncts of
the extensions of A.

Fact 5 Let A be a regular explanation. X is a candidate of A if and only if
it is the adjunct of some extension of A.
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Proof. Let X be a candidate of A, and let X = N - X. We will show
that A U X is an extension, that is, no more normal conditions can
be consistently added to it. Suppose to the contrary that x E X is
consistent with A U X. There is a minimal conflict set S containing x
but no other member of X (if not, X - x would be a candidate, and X
would not be). All the element of S except x are in A U X; therefore
x is inconsistent with it. Since A U X is an extension of A, and A and
A' are regular, X is its adjunct by Fact 3.

In the other direction, let A' be an extension of A. We will show that
adj(A') is a candidate for A. Since A and A' are regular, adj(A') is the
set Y = N - A' (Fact 3). Y must contain at least one element from each
minimal conflict, otherwise it would be inconsistent. Suppose that Y is
not a candidate. Then there is an element y E Y that is redundant, i.e.,
Y - y contains a member of each minimal conflict. This y is consistent
with A', which means that A' cannot be an extension, contradicting
the hypothesis.

Example 13 We redo the last example using these techniques. Here are the
minimal conflicts and their candidates for each of the three minimal expla-
nntions of76.

Minimal explanation Conflicts Candidate

1. ab(c) ok(a),ok(b) ok(c),ok(a)

ok(c) ok(c), ok(b)

2. ab(a), ok(c) ok(a) ok(a)

3. ab(b), ok(c) ok(b) ok(b)

The candidates are just the adjuncts of the minimal explanations. In general
there can be candidates which are not adjuncts of minimal explanations, but
these will always be subsumed by some other candidate that is. In this case the
minimal conflict encoding is as complex as finding the extensions directly, but
as the number of normal conditions gets larger, the minimal conflict encoding
tends to be much more compact.

If the normal explanations of an observation are not regular, then the
method of comparing adjuncts of the extensions of minimal explanations
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will not identify them. In the non-regular case, we must instead look at an
expanded class of explanations, rather than just the minimal ones of g.

Definition 8 (Active explanation)
Any abnormal condition (the complement of a normal condition) that has an
explanation in a DCN is called an active condition. An active explanation
for an observation g is a minimal explanation for {g} U W, where W is any
set of active conditions.

That is, the active explanations for g are just the minimal explanations for g
expanded by minimal explanations for some active conditions. We can now
define an active core for an explanation.

Definition 9 Let A be any explanation for g. An active core of A is a subset
A' of A such that:

1. A' is an active explanation of g.

2. There is some extension E of A' such that adj(E) = adj(A).

We can show that the set of active explanations covers the active cores of all
normal explanations. For normal A, there is an active explanation contained
in A that is an active core of A.

Fact 6 For every normal explanation A there exists a subset A' C A such
that A' is an active core of A.

Proof. The proof is similar to that for Fact 3. Let X be the normal conditions
contained in A, and Y the conditions exempted by A, so that adj(A) =
N - (X U Y). Let A' be a minimal subset of A such that the elements
of Y are causally exempted by A'. Form the extension E = A' U X.
Now adj(E) g adj(A), since E contains all of X and causally exempts
all of Y. If adj(E) C adj(A), then A is not a normal explanation,
contradicting the hypothesis.

Now we can use the same techniques as for regular explanations, namely,
find all active explanations, and choose the ones with minimal adjuncts.
These will be the active cores of the normal explanations. Since exempted
conditions are explicitly explained by active explanations, the adjuncts can
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be readily computed by using the minimal conflict method to find the nor-
mal conditions contained in the adjunct, and then subtracting the exempted
conditions.

Example 14 Consider the basic XOR circuit, with the addition that when-
ever c is abnormal it causes b to be abnormal: ab(c) D ab(b) E R. Assuming
j and i as initial conditions, we list the minimal conflicts and adjuncts for
each of the active explanations of U.

Active explanation Conflicts Adjunct

1. ab(c) ok(b) ok(c)

ok(c)

2. ab(a),ok(c) ok(a) ok(a)

3. ab(b),ok(c) ok(b) ok(b)

The active explanations in this case are the minimal explanations although in
general they need not be. The adjuncts can be computed from the conflicts;
the adjunct of 1 does not contain ok(b), because its complement is caused
by ab(c), and so exempted. By comparing adjuncts we conclude that the
extension of 1 (containing ok(a)) is normal, as well as the extensions of 2
and 3.

At this point we have enough results to form a proof method for finding
the LIEs of an observation set 0, assuming that the causal relation is finite,
and all minimal conflicts are finite and computable.

1. Find the maximal subsets of 0 that have lenient explanations; call
these the lenient subsets.

=• Find minimal causal explanations for all subsets of 0, and check
whether they are consistent with 0 U I. Choose the maximal subsets
of 0 that have such explanations.

2. Find the active explanations for these subsets of 0.

=• Adjoin to 0 all the possible subsets of the active conditions, and
find all minimal explanations for each.
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Figure 8: A Problem-Solving Architecture

3. Find the normal explanations among all explanations for the lenient
subsets of 0.

=• Find the conflicts of the active explanations of the previous step,
and generate the adjuncts. The normal explanations are the extensions
of the active explanations with minimal active candidates.

4. The ideal explanations are the normal explanations with minimal non-
normal causes.

4.2 ATMS implementation

The proof method just given can be implemented using a modification of the
computational techniques available in the ATMS. Because the full language
of the correlational theory I of DCNs is first-order, and the causal relation
may be infinite, it is not possible in general to have a complete proof theory
(as is also the case for normal default logic). Instead, the computation of
LIEs can be phrased in terms of a dialogue between a problem solver and
the ATMS [de Kleer, 1986], as in Figure 4.2.

The problem solver is an inference engine containing the DCN theory.
It computes two kinds of structures and sends them to the ATMS. The
definite clause causation relation is sent directly as an ATMS definite clause.
These clauses are stored by the ATMS and used to compute the minimal
explanations for all literals c present in the ATMS.

The ATMS keeps track of inconsistent sets of causes and normal condi-
tions through the use of its NOGOOD mechanism. Whenever the problem
solver finds a set of literals whose conjunction is inconsistent with I, it can
send them to the ATMS as a NOGOOD. The label of a node g in the ATMS
is the set of all minimal A C C U N such that A j=R g and A is consistent
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with the NOGOODS. If the ATMS has the complete relation R, and the
NOGOODS completely cover the inconsistent causes, then the label of g is
the set of minimal explanations for g.

We need w7,xo additional structures: an observation set node, and an active
condition set node. LIEs are found by computing the candidates of the labels
of the conjunction of these two nodes.

We have successfully tried all of the problems in this paper. Because the
ATMS algorithms are exponential, there can be difficulties in scaling up to
larger problems. The techniques developed for using heuristics in the ATMS
might help here, and the causal relation could be used to focus the work of
the ATMS. However, currently we have no experience with large problems.

5 Relation to other approaches

We have already critiqued the consistency-based approach to MBD in Section
2. More recently, several abductive approaches have been developed, among
them [Console and Torasso, 1991; Poole, 1989; Poole, 1993; Dressler and
Struss, 1992; Besnard and Cordier, 1993]. These methods are similar to
DCNs in their use of abduction to explain rather than excuse observations.
For MBD, abductive explanations are typically defined as follows.

Definition 10 Let (SD, CMPS) be a system, and let A be a subset of CMPS.

Define ab -- {ab(c) I c E A) U {-fab(c) I c E CMPS - A}. Then A is an
abductive diagnosis of the observations 0 if it is a minimal set such that

1. SD UAab f- 0 and

2. SD U Aab U 0 is consistent.

This is the same definition as for the consistency-based approach (Definition
1), with the addition of the first clause stating the the observations must
follow from the system decription. It is also similar to the definition of
explanation in DCNs (3), but there is no distinction between the causation
relation and correlation.

The general relation between abductive and consistency-based approaches
to MBD is pointed out in [Poole, 1988a], [Console et al., 1988], and [Konolige,
1992]. The type of information needed is different: in the abductive method,
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one uses forward-working axioms to derive observations from component be-
havior, e.g., the implications of Equation (1) and the fault model (4). Note
that the abductive method can use partial fault models. These are typically
expressed as behavioral modes of the components, i.e., axioms of the form

fault,(c) D Pi(c) (14)

faulti(c) D ab(c)

Each fault1 (c) is a particular way in which the component can fail, and P1(c)
describes that failure. For the consistency-based method to return similar di-
agnoses, the system description must be augmented by closure axioms stating
that the only faults are those explicitly given, that is, axioms of the form

ab(x) D fault i V ... V faultn . (15)

The abductive method also solves the problem of relevance, in the sense
that the diagnosis A involves components that, if abnormal, imply the obser-
vations. And it can accommodate neutral causes, by making them hypothe-
ses, but not classifying them as either normal or abnormal. But, there are
still several ways in which the abductive approaches differ from DCNs.

"* There is no explicit causal relation. The explanations given are not
causal implications, and the problems noted in Section 2.3 apply.

"* The definition of ab&dctive diagnosis is complicated by the presence
of both normality and fault assumptions. In the theory of DCNs, it
was the interaction of these two that produced the complications of
normal and ideal explanations. The abductive approaches to MBD
have problems in formulating a parsimony criteria for explanations.

We examine two representative examples of the abductive approach in more
detail: Poole's THEORIST system, and Console, Dupre and Torasso's merg-
ing of consistency-based and abductive approaches.

5.1 Poole's THEORIST

Poole [Poole, 1989; Poole, 1993] develops an abductive approach to diagnosis
using his THEORIST system. Given a system (SD, CMPS), a normality as-
sumption is a predicate -,ab(c) for some component c, and a fault assumption
is a predicate faulti(c) such that faulti(c) D ab(c).
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Definition 11 Let D be a set of normality and fault assumptions. A diag-
nosis for observations 0 is a minimal set D such that

1. SDuDF- Oand
2. SDUDUO is consistent.

This definition is similar to the general abductive framework of Definition
10, with two differences. It makes the explicit assumption of behavioral
modes for faults; this is one of the first logical frameworks to incorporate
fault models along with the normal behavior of the system. Second, D is
a minimal set of normality and fault assumptions together. From the DCN
point of view, Poole's framework does not enforce maximal normality (even
without causal precedence), and so will generate spurious diagnoses. On the
other hand, Poole's system does have a strong parsimony criterion for both
normal conditions and faults, giving only the assumptions that are strictly
necessary for predicting the observations. Finally, other aspects of DCNs,
such as the integration of excuses and explanations into lenient explanations,
are not present in Poole's framework.

5.2 Console and Torasso

Console and Torasso [Console and Torasso, 1991] generalize both the ab-
ductive and consistency-based approaches. Like Poole, they use a system
description that describes normal functioning of the system, as well as be-
havioral fault modes. They define a diagnostic problem as a system descrip-
tion, a set of components, observations to be explained, and a context for the
explanation. The context is a set of conditions that are observed or hypoth-
esized but do not need explanation. They can serve as initial conditions to
the diagnosis problem, or as hypotheses for neutral causes. For our purposes,
we consider the context to be null.

Diagnoses are constructed from complete assignments of behaviors to the
components.

Definition 12 Let W be a set composed of ab(c) or fault,(c) for each com-
ponent c, and 0+ a subset of 0. A diagnosis is a set W such that

1. SDUW•-0+ and

2. sDUWUO is consistent.
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The subset O+ is the part of the observations that are explained abductively.
By varying 0+, the definition can be made to range from consistency-based
(O+ - 0) to fully abductive (O+ = 0). This behavior is similar to that of
lenient explanations in DCNs, where a maximal subset of the observations
are causally explained, and the rest are subject to excuses.

The definition of diagnosis here differs from Poole's in that a complete set
of behaviors for components are assumed. In Console and Torasso's system,
a diagnosis that is minimal in fault assumptions will have a maximal set
of normal assumptions, unlike in Poole's system, in which both normal and
fault assumptions are minimized. This corresponds to normal explanations
in DCNs, although of course there is no causal exemption.

On the other hand, Poole's system is better in preferring explanations
with a minimal set of faults. Consider the following example:1

ab(l) D g

c, ab(2) D g (16)
ab(1) Dab(2)

To explain g given the initial condition c, Poole's system will give the two
minimal sets {ab(1)} and {ab(2)}. This seems intuitively correct, since either
of the explanations would be equally likely, given equal priors for ab(1) and
ab(2). Console and Torasso will have two explanations, {ok(l), ab(2)} and
{ab(1), ab(2)}. The first of these is minimal in faults, and so would be
preferred.

Console and Torasso also mention preferences based on implication, i.e.,
explanation E1 is preferred to E2 if E2 ý= E, but not vice versa. This is a
way of producing partial explanations from the complete sets W. However,
this method treats normality and fault assumptions equally, whereas the
selection of explanations in DCNs is a two-step process, first maximizing
normality assumptions and then minimizing abnormalities.

'In fact, Console and Torasso explicitly forbid the presence of abnormality predicates
in the bead of a clause, ruling out the following example. They do not state why this is
the case, and in the concluding section they relax this assumption.
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5.3 Other approaches to explanation

Although we have concentrated on the application of DCNs to diagnosis,
they provide a general framework for representing causation and explana-
tion. Causation can be used as a unifying concept to understand various
perspectives on diagnosis: excusing vs. explaining observations, correlation
vs. causation, and the integration of normal conditions with explanatory
causes. Although many of these issues have been dealt with separately in
the literature, there have been few attempts to draw them together into a
single framework, and the issues are often obscured by the formal or computa-
tional paradigm. There are many formal nonmonotonic systems that provide
similar capabilities, although they are not phrased in terms of causation, e.g.,
Poole's THEORIST [Poole, 1988b]. DCNs are distinguished by providing a
coherent account of causation, correlation, and default conditions. Perhaps
the closest system is Geffner's theory of causal and conditional reasoning
[Geffner, 19891, which also takes causation as a primitive concept, and ties
together explanation, defaults, and causation. He provides a complex but
plausible formal account of these concepts, using a modal expression Cca to
represent "a is caused." Although the formalisms differ, there are many
points of similarity between this work and his. Perhaps the major difference
is that the roots of DCNs are default logic and abductive inference, and thus
there are natural computational methods using the ATMS.

A good test of the DCN framework is the application to reasoning about
events. We have started this task, and it appears that the problems of
causation, explanation, and prediction in an event calculus can be treated
within the DCN framework. The approach is similar to that of Shanahan
[Shanahan, 19891, but the formal machinery is more general, and includes
causation.

6 Some remarks about causation

Perhaps the weakest point of the DCN approach is that the theory of cau-
sation is not well developed. Since causation is treated as a proof-theoretic
concept, there are some obvious problems (or, one might say opportunities)
that arise. We discuss some of these here; a more detailed treatment can be
found in [Konolige, 1991).
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and cumulative:

If A FR c and B, c F_ d, then A, B FR d.

As we have stated, the important part of the causal relation is that it captures
the functional dependence of the domain variables; this is the main difference
between a causal relation and a merely correlational one. The asymmetry of
causation is represented by the asymmetry of inference in a definite clause
theory.

These remarks leave open the question of whether, in a particular in-
stance, it is possible to have a causation relation that is symmetric for two
propositions, or more generally to have one that is cyclic, containing a loop
that leads from a proposition back to the same proposition. Other commit-
ments may answer this question: for instance, assuming that causes always
precede their effects in time forces the causal relation to be acyclic. The
definite clause theory itself does not enforce any acyclic condition.

There are some further complications in defining a causal relation that we
will mention here, without offering any definitive solutions. The first is that
of inferred causation. We mentioned this briefly in proposing the definitional
theory in Section 3.2. We use only a simple form of definitions to represent
complements; any full-fledged theory of causation should at least take into
account abstraction relations among propositions, e.g., "A 40-watt bulb is a
type of bulb."

Another problem arises when our knowledge of the causation relation is
partial. We have already remarked that we may only know a subset of the
actual causation relation. Other kinds of uncertainty also exist. For example,
suppose we know that dialing the number "911" connects one with either
the police or the fire department, but we don't know which. The action of
dialing 911 is completely determinate, it's just that we don't know the exact
outcome. To express epistemic uncertainty of this kind, it is necessary to
describe the causation relation in an appropriate language. If we let c stand
for the action of dialing 911, d for calling the police, and e for calling the fire
department, then our knowledge is expressed by the statement:

Either c FR d or C FR e.

DCNs are not expressive enough to state this; a language that talks about
causation, such as Geffner's [Geffner, 19891, would be necessary.
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First, there is a deliberate sloppiness about stating propositions in the
causal relation. Most of the ones used in this paper are statements about
particular properties, e.g., the switch is closed or the light is on. But causa-
tion also involves events: "closing the switch caused the light to go on." We
are trying to be as noncommittal as possible about the ontology of events
and propositions, whether states of the world can be allowed as causes, how
to specify the time of events, and so on. Any consistent defensible set of
choices will do.

The second point is that a definite clause of R must specify all and only
the propositions governing an effect. Closing the switch only turns on the
bulbs if they are ok and the wires are intact. Of course, in any real-world
situation there will be an inordinate number of such conditions, so any default
causal theory will be relative to a set of background assumptions that do not
enter into the theory. The choice of these assumptions is conventional.

It is important that only the relevant propositions participate in the
causal relation. If we add an irrelevant proposition to the antecedent of
a clause, the relation would still be useful in the sense that conjunction of
the antecedents produces the desired effect, but it would be misleading in
implying that all the antecedents were necessary. In producing explanations,
minimal causal antecedents are required in the causal relation to ensure that
explanations do not contain irrelevant propositions.

The role of primitive causes is to define the propositions over which, in
some sense, we can exercise direct control. The point at which we choose
to define primitive causes is partly a matter of convention. Often bodily
movements are taken to be the ultimate primitive causes, but this viewpoint
is unnecessarily restrictive. Any well-defined event or condition that we can
reliably bring about will suffice for a primitive cause, as long as the purpose
of producing explanations is to give a set of conditions that account for the
observed facts, and over which we have control.

One way to understand the causation relation R is as a provability re-
lation. The provability relation is composed from individual inference steps
combined into a tree; in the same way, the causation relation is specified by
combining definite clause inference steps into a proof. Like classical prov-
ability, causation is monotonic:

If A FR c and B D A, then B FR c
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7 Conclusion

We have developed a theory of causation in the presence of defaults about
normally occurring conditions. The theory is based on a structure called
Default Causal Nets, which integrate causal, correlational, and definitional
information. These nets can be used to generate predictions and explain
observations.

We have argued that preferences among explanations can be based on
noting how causation and defaults interact, as in Examples I and 2. Such
preferences seem to follow commonsense reasoning based on causal knowl-
edge. In model-based diagnosis, any assumptions about causation and de-
faults are implicit in the representation of components as being normal or
abnormal, and the search for diagnoses is based on abnormal components.
Such a view, we argue, is representationally restrictive, and does not give a
deep enough analysis about how defaults interact. For example, although
we can state relations among abnormalities in the domain, these relations
do not necessarily lead to intuitively correct preferences among diagnoses
in the consistency-based approach, because material implications within the
framework are not treated as causal relations.
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A Representationalist Theory of Intention
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Abstract the relation between belief and intention is mediated by
the fundamental structure of the semantics, and is inde-

Several formalizations of cognitive state that pendent of any particular choice for temporal operators
include intentions and beliefs based on normal or theory of action. This gives us a very direct, simple,
modal logics (NMLs) have appeared in the re- and semantically motivated theory, and one that can be
cent literature. We argue that NMLs are not an conjoined with whatever temporal theory is appropriate
appropriate representation for intention, and for a given task.
provide an alternative model, one that is rep- In the next section (Section 2), we make the case for a
resentationalist, in the sense that its semantic representationalist theory of intention. Section 3 consti-
objects provide a more direct representation of tutes the technical heart of our paper: there we develop
cognitive state of the intending agent. We ar- our formal model of intention. Finally, in Section 4, we
gue that this approach results in a much sim- draw some conclusions and point the way toward further
pier model of intention than does the use of development of our logic of intention.
an NML, and that, moreover, it allows us to
capture interesting properties of intention that 2 The case for representationalism
have not been addressed in previous work.

As we noted above, NMLs have been widely and suc-
1 Introduction cessfully used in the formalization of belief. It is largely

as a result of this success that researchers have adopted
Formalizations of cognitive state that include inten- them in building models of intention. However, we ar-
tions and beliefs have appeared in the recent literature gue in this section that these logics are inappropriate to
[Cohen and Levesque, 1990a; Rao and Georgeff, 1991; models of intention:
Shoham, 1990; Konolige and Pollack, 1989]. With the e The semantic rule for normal modal operators is the
exception of the current authors, these have all employed wrong interpretation for intention. This rule leads
normal modal logics (NMLs), that is, logics in which the to the confusion of an intention to do 0 with an in-
semantics of the modal operators is defined by accessi- tention to do any IogCal consequence of , called the
bility relations over possible worlds. This is not surpris- ide-efect problemf[Bratman, 1987]. A simple and
ing, since NMLs have proven to be a powerful tool for iitively jsfble chang in t sema le

modeling the cognitive attitudes of belief and knowledge. intui ti on sifiablechange in thensema le

However, we argue that intention and belief are very dif- makes intention side-effect free (and nonnormal).
ferent beasts, and that NMLs are ill-suited to a formal * Normal modal logics do not provide a means of re-
theory of intention. lating intentions to one another. Relations among

We therefore present an alternative model of inten- intentions are necessary to describe the means-end
tion, one that is representationalist, in the sense that its connection between intentions.
semantic objects provide a more direct representation of NMLs are closed under logical consequence: given a
cognitive state of the intending agent. We argue that normal modal operator L, if L# is true, and 0 •= 0,
this approach results in a much simpler model of inten- it follows that LO is true. When L represents belief,
tion than does the use of an NML, and that, moreover, consequential closure can be taken to be an idealization:
it allows us to capture interesting properties of intention although it is obviously unrealistic in general to assume
that have not been addressed in previous work. Further, that an agent believes all the consequences of his beliefs,

"Supported by the Office of Naval Research under Con- it is reasonable to assume this property of an ideal agent,
tract No. N00014-89-C-0095. and this idealization is acceptable in many instances.

ISupported in part by a National Science Foundation However, consequential closure cannot be assumed for
Young Investigator's Award (IRI-9258392), by the Air Force intention, even as an idealization. It is clear that an
Office of Scientific Research (Contract F49620-92-J-0422), agent who intends to perform an action usually does not
and by DARPA (Contract F30602-93-C-0038). intend all the consequences of that action, or even all the



consequences he anticipates. Some of the consequences Pole o w
are goals of the agent, while others are "side effects" that
the agent is not committed to. 1

Because NMLs are subject to consequential closure,
and intention is not, several strategies are used to make
the logics side-effect free. They all involve relativizing
the side-effects of intentions to believed consequences.
The thesis of realism is that all of an agent's intended b
worlds are also belief worlds [Cohen and Levesque, -b
1990a], that is, a rational agent will not intend worlds
that he believes are not possible. Given the realism the-
sis, whenever the agent intends a and believes a D b,
he will also intend 6. Cohen and Levesque [Cohen and
Levesque, 1990b] adopt the realism thesis, and rely on Figure 1: A Venn diagram of two scenarios.
claims about way an agent may change his beliefs about
the connection between an intended proposition and its
consequences to make their theory side-effect free. In at interpretations within the shaded area, a and b both
their case, an agent who always believes that a D b is al- hold, and so cannot be distinguished. But the comple-
ways true will incur the side-effect problem when intend- ment of these two propositions is different. A world in
ing a. Also, any analytic implication (i.e., when a D b the area -,a, 6, in which the agent feels pain but does
must be true in all possible futures) will cause problems. not have his tooth pulled, is an acceptable world for the
Two special cases are abstractions (e.g., making a din- intention b, but not for a. So the interpretation rule for
ner is an abstraction of making a spaghetti dinner) and intention must take into account the complement of the
conjunctions (intending a A b implies intending a and intended worlds. As we will see in Section 3, this makes
intending b separately). intention a nonnormal modal operator. It also makes

Rao and Georgeff [Rao and Georgeff, 1991] point out it side-effect, abstraction, and conjunction free, whether
that by relaxing realism, intentions can be made side- we choose realism or weak realism.
effect free. Weak realism is the thesis that at least one The representationalist part of the model comes in
intended world is a belief world. There can thus be in- representing the mental state of the agent using scenar-
tention worlds that are not belief worlds. Now, even ios. Cognitive structures, containing elements represent-
though the agent believes a D b, b is not an intention, ing intentions and the relationship among intentions, are
because there is an intended world in which a is true but used for this purpose.
not b. Weak realism seems inherently less desirable than
realism (how is it possible for an agent to intend worlds
he does not believe possible?), and it is still not fully 3 Cognitive structures
side-effect free, since it is closed under conjunctions and Our model of intention will have two components: pos-
abstractions. sible worlds that represent possible future courses of

These problems do not mean we have to abandon pos- events, and cognitive structures, a representation of the
sible worlds. In fact, with the right semantics, possible mental state components of an agent. We introduce com-
worlds are an intuitively satisfying way of representing plications of the model in successive sections. To begin,
future possibility and intention for an agent. We note we define the simplest model, a static representation of
that intentions divide the possible futures into those that primary or "top-level" intentions. Primary intentions do
the agent wants or prefers, and those he does not. Con- not depend on any other intentions that the agent cur-
sider the diagram of Figure 1. The rectangle represents rently has.2

the set of possible worlds W. The scenario for a propo-
sition a is the set of worlds in W that make a true: the 3.1 Possible Futures
shaded area in the diagram. An agent that has a as
an intention will be content if the actual world is any The concept of intention is intimately connected with
one of those in the shaded area, and will be unhappy if choosing among course of future action. In the model,
it is any unshaded one. The division between wanted courses of action are represented by possible worlds.
and unwanted worlds is the important concept behind Each possible world is a complete history, specifying
scenarios. For example, consider another proposition b states of the world at all instants of time. We assume
that is implied by a (for concreteness, take a = "I get there is a distinguished moment now in all worlds that
my tooth filled," and b = "I feel pain.") If we just look

2This is a bit of an overstatement, since an agent's in-
'For example, an agent may intend to go to the dentist tentions change over time, and an intention that begins life

to get his tooth filled, believing that he will feel pain as a as primary may later also be used in support of some other
consequence, without being committed to feeling the pain. If intention. In such cases we say that the intention has been
he discovers that the dental work in painless, he will not seek overloaded. Overloading is a cognitively efficient strategy for
to experience the pain nonetheless. See Bratman [Bratman an agent to employ [Pollack, 1991]. For the moment, how-
19871 and Cohen and Levesque [Cohen and Levesque, 1990b1 ever, we will not worry about primary intentions that later
for further discussion, are overloaded.



is the evaluation point for statements.3  The beliefs of an agent are always possible, that is, they
The set of possible worlds is W. For each world w E are a subset of the possible worlds. This also means that

W, there is an evaluation function that determines the an agent cannot be wrong about necessary truths. A
value of sentences in a language C, which refer to states more complicated theory would distinguish an agent's
of the world or actions that take place between states of beliefs about what is possible from what is actually poe-
this world. For any sentence 4 of C, w(6) is the truth- sible. The key concept is that intentions are represented
value of 4. with respect to a background of beliefs about possible

To talk about contingent and necessary facts C is ex- courses of events (represented by 0), as well as beliefs
tended to £o, which includes the modal operators 0 and about contingent facts (represented by B). Stated in £C,
0. The possibility operator ) expresses the existence of the following are theorems:
a world with a given property. 06 says that there is a B(O) D 06
world (among W) for which 0 is true. Its semantics is: B(oO) =o (1)

Definition 3.1 Of course, beliefs about contingent facts can still be false,
w, W t= 00 iff 3w' E W. w', W P- 0. since the real world does not have to be among the be-

lieved ones. The B operator represents all futures the
0 is used to specify the background of physically possi- agent believes might occur, including those in which he
ble worlds under which reasoning about intention takes performs various actions or those in which he does noth-
place, and will be important in describing the structure ing. The beliefs form a background of all the possibilities
of a given domain. The necessity operator 04 is defined among which the agent can choose by acting in particu-
as "o-'n. lar ways.

The third component of a cognitive structure for an
3.2 Belief and primary intentions agent, an intention structure, is a set of scenarios M,.

We begin by defining concept of scenario. Intuitively, an agent's intention structure will include
one scenario for each of his primary intentions. We write

Definition 3.2 Let W be a set of possible worlds, and . as a set of sentences of Co, where each sentence 4
4 any sentence of 4. A scenario for 4) is the set stands for its scenario M#.

M# = {w E W I w, W ý -). Definition 3.5
W, ,1) k 1(0) iff 3% E I such that Mp is a scenario

A scenario for 4 identifi"s 4 with the subset of W that for 4, i.e. MA = Mo.
make 4 true.

A cognitive structure consists of the background set This definition bears an interesting relation to the se-

of worlds, and the beliefs and intentions of an agent. 4  mantics of normal modal operators. Each primary inten-
tion (i.e., each element of 7) acts like a separate modal

Definition 3.3 A cognitive structure is a tuple operator. A normal modal operator I0 for the element
(W, E, I) consisting of a set of possible worlds W, a sub- MU would be defined using:
set of W (E, the beliefs of the agent) and a set of sce-
narios over W (1, the intentions of the agent). (W, EZ) 1 (6) iff M- _ Mo I

We extend Co to C1 by adding the modal operators B just as for belief. The semantic rule for I is similar, but
for belief and I for intentions. The beliefs of an agent are uses equality between the scenarios instead of subset, so
taken to be the sentences true in all worlds of E.6 For that the worlds not in Mo must satisfy -04. By identify-
simplicity, we often write E as a set of sentences of £o, ing intentions with scenarios, we explicitly encode in the
so that MT is the corresponding possible worlds set. semantics the distinction between preferred and rejected

Definition 3.4 possible worlds. If we were to use the weaker form of
the semantic rule for 1(4) (i.e., Mo C_ M,), then there

(W, E,7) k B(4)) iff Vw' E ME.. w', W • 4, could be some world w which satisfies 4 but is not a
i.e, M C_ M'. world satisfying the agent's intention. This is contrary

to our reading of intention as a preference criterion di-
3This definition of possible worlds is the one usually used viding possible worlds. "

in the philosophical literature, but differs from that of Moore From this formal definition, it is easy to show that 1(0)
in (Moore, 1980], where possible worlds are identified with will hold just in case 6 is equivalent to some proposition
states at a particular time. 0 E 1, given the background structure W.

"In ths paper, we deal only with the single agent case, Proposition 3.1 For any structure (W, E, 1),
and thus we neither explicitly indicate the name of the (un-
ambiguous) agent associated with any cognitive structure, (W, E,Z) k I(6) if 30, E I. W • 0(4 )
nor include an agent argument in our intention or belief
predicates. 'Our semantics is also equivalent to the minimal model

'This enforces the condition of logical omniscience semantics of Chellas [Chellas, 1980]. In the minimal model
[Levesque, 19841 on the agent's beliefs, which is not a realis- semantics, the accessibility relation is from a world to a set
tic assumption. We could chose a different form for beliefs, of sets of world:', i.e., a set of propositions. As Chelias shows,
say a set of sentences of Ci that is not dosed with respect to such logics are nonnormal, and the simplest system, E, con-
consequence; but it would obscure the subsequent analysis. tains only the inference rule 0 =_ /I M 140.
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Figure 2: A Veun diagram of conjunctive scenarios. Figure 3: A Venn diagram of belief and intention.

The I operator is true precisely of the individual top- of some set of primary intentions." We use the ope,', or
level intentions the agent has. It is not subject to closure * (0) for this reading.
under logical consequence or under the agent's beliefs. Definition 3.6
To see this, consider the cognitive structure (W, E, {a)),
i.e., the agent has the single intention to perform a. As- (W, E,7) kl P () if 3J C_ such that Mj is a scenario
sume that a logically implies b, but not the converse, for ý, i.e., Mi = M,.
i.e., W k 0(a D b) A O(b A -,a). I" can be characterized by the following axioms.

Then Ma $ Mb, because there is a world in which b is Proposition 3.2 The following are theorems of £1.

true but a is not. From the semantics of I, we have l(a) D Pl(a)

(W, E, {a)) k 1(a) A -"I(b) l°(a) A lP(b) D l*(a A b)

This shows that I is not closed with respect to valid con- So I* sanctions the conjoining of separate intentions, but
sequence. To distinguish the intention of a from its nec- not the splitting of an intention that is a conjunction. 7

essary consequence ,•. there must be at least one possible
world in which b is true but a is not. As a particular in- 3.3 Rationality constraints: intention and
stance of this, our theory does not equate an intention to belief
perform a conjunction with a conjunction of intentions. So far we have not related the agent's intentions to his
Assume that the set of possible worlds distinguishes a beliefs. Consider the diagram of Figure 3, for which the
and b, i.e., W P= 0(aA-b)AO(-aAb). Now consider two cognitive structure is (W, E, {a, b)). The agent's two in-
agents: the first has the single primary intention a A 6, tentions are jointly possible, since the overlapping area
and the second has exactly the two primary intentions a contains at least one world in which they both hold.
and b. Then: However, based on the contingent facts of the situation,

(W, E, {a A b)) k 1(a A b) A -"1(a) A -,(b) (2) the agent doe. not believe that they will actually occur,
(W, E, a, b} l(a)I(b)"l(a b) () since his beliefs, given by the set E, fall outside the over-

lap area. A rational agent will not form intentions that
The reason for this is clear from the diagram of Figure 2. he does not believe can be jointly executed. Further, in-
The scenario M.A^ excludes all interpretations outside of tentions should be nontrivial, in the sense that the agent
the overlap area in the figure; hence it is not equivalent to intending € should not believe that 0 will occur without
Ma, for which a perfectly acceptable world could contain the intervening action of the agent. To enforce ratio-
a and -'b; nor is it equivalent to Mb. nality, we define the following conditions on cognitive

On the other hand, taking the two scenarios M. and structures.
Mb singly, acceptable worlds are in the respective re-
gions a and b. Thus the most acceptable worlds are in Definition 3.7 A cognitive structure (W, E,Z) is ad-
the overlap region. However, if one of the goals becomes missible if it is achievable:
impossible, say a, then any world in b is acceptable, un- 3w E E. VO E 1. to E M#
like the case with the conjunctive scenario M.At.

A similar story can be told for side effects and ab- end nontrivial:
straction. The ability to distinguish between an inten-
tion and its side effects, abstractions, and conjunctions VO E 7. 3 w E E. to i M#.
is basic to the semantics given in Definition 3.5, and does This condition leads immediately to the following conse-
not require any further axioms or stipulations, nor any quences.
commitment to a particular temporal logic. quences.

An alternative to the reading of "intention" as sepa- ?In terms of Chellas' minimal models, the seniantics of r
rate primary intentions is the reading as conjoined inten- is for models that are closed under intersection. This makes
tion, i.e., "o is intended if it is the intersection of worlds sense: P represents any intersection of intentions.



Proposition 3.3 These sentences are valid in all ad- order on the members of the set; and a plan that includes
missible structures. an action involving objects whose identities are so far un-
-'1(a A --a) Consistency derspecified can be elaborated by fixing the identities of

)A D a A b Joint one or more of the objects. As Bratman [Bratman, 1987,
(a) l(b) C(a ^) onConsstency p.291 notes, "[p]lans concerning ends embed plans con-

P*(a) D Oa cerning means and preliminary steps; and more general
P(a) D BOa Rewi sm intentions ... embed more specific ones." The distinc-
1(a) ) -,B(-,a) Epistemic Consistency tion between these two kinds of embedding recurs in the
1(a) A l(b) D -"B(-"(a A b)) Joint Epistemic Consistency Al literature. For instance, Kautz [Kautz, 1990] iden-
l'(a) D -iB-'(a) tifies two relations: (1) decomposition, which relates a
1(a) D -,B(a) A --B(-,a) Epistemic Indeterminacy plan to another plan that constitutes a way of carrying

it out (means and preliminary steps), and (2) abstrac-
A rational agent, characterized by achievable structures, tion, which relates a specific plan to a more general one
does not believe that his joint intentions represent an that subsumes it. It is useful to have a term to refer to
impossible situation: this is the theorem of Joint Epis- the inverse relation to abstraction: we shall speak of this
temic Consistency. This theorem can be stated using as specialization.
either reading of intention. Both kinds of elaboration are represented in the cog-

In addition, the nontriviality condition on models nitive structure by a graph among intentions. The graph
means that the agent does not believe that any one of represents the means-ends structure of agent intentions.
his intentions will take place without his efforts (Epis- For example, suppose the agent intends to do a by do-
temic Indeterminacy). Recall that the B operator repre- ing b and c. Then the cognitive structure contains the
sents all futures the agent believes might occur, including graph fragment Mb, M, --- Ma. As usual, in the cog-
those in which he performs various actions or does noth- nitive structure we let the propositions stand for their
ing. The beliefs form a background of all the possibilities associated scenarios.
among which the agent can choose by acting in particu-
lar ways. If in all these worlds a fact 40 obtains, it does Definition 3.8 An elaborated ognitive structure con-
no good for an agent to form an intention to achieve , sists of a cognitive structure and an embedding graph ---c
even if it is an action of the agent, because it will occur among intentions: (W, d, 7,-i). The graph is acyclic
without any choice on the part of the agent. So, for ex- and rooted in the primary intentions.
ample, if the agent believes he will be forced to act at Remarks. The reason we need both primary intentions
some future point, perhaps involuntarily (e.g., by sneez- and the graph structure is that, while every root of the
ing), it is not rational for the agent to form an intention graph must be a primary intention, primary intentions
to do that. can also serve as subordinate intentions. Consider the

Note that in our logic, the realism thesis is expressed masochistic agent with a tooth cavity: he both intends
using beliefs about what is possible. This is because we to feel pain, and intends to get his tooth filled. His
distinguish beliefs about contingent facts ("Nixon was cognitive structure would be:
president") from the background possibilities an agent {W, {a D b}, {a, b}, a -- b)
believes could occur, but haven't or won't. Realism fol-
lows directly from Joint Consistency and the simplifying Also note that a scenario of the graph ma serve to dab-
assumption (1) that all worlds W are possibilities for the orate more than one intention; Pollack [Pollack, 1991]
agent. calls this overloading.

In this logic, we are deliberately leaving the temporal The embedding graph -- is the most strongly repre-
aspects vague until they are necessary. At this level of sentationalist feature of the model. It represents the
abstraction, different kinds of goals can be treated on an re oition in a diecay, b man ofa
equal basis. For example, goals of prevention, which are relation among the relevant scenarios. A normal modal
problematic for some temporal logic accounts of inten- logic is incapable of this, because its accessibility rela-
tion, are easily represented. For an agent to prevent a tion goes from a single world (rather than a scenario) to
state p from occurring, he must believe both p and -,p to a set of possible worlds.
be possible at some future state. The agent's intention In the language, C£ is extended to include a modal
is the scenario consisting of worlds in which p is always operator By(a; 01," - ,), where the fli together are an

true. elaboration of a.
Definition 3.9

3.4 Itelative intentions (W, E, 1, -- ) ý=By(a; P1,.-) if #I,-- a--o

As we discussed earlier, one of the primary character- For rational agents, intention elaborations will have
istics of intentions is that they are structures: agents the same properties vis-a-vis belief as top-level inten-
often form intentions relative to pre-existing intentions. tions. So, in admissible structures we insist on the con-
That is, they "elaborate" their existing plans. There are dition that any scenario of -- is part of the achievable
various ways in which a plan can be elaborated. For in- and nontrivial intentions.
stance, a plan that includes an action that is not directly Definition 3.10 A cognitive structure (W, E,1) is ad-
executable can be elaborated by specifying a particular D efin it is ac-
way of carrying out that action; a plan that includes a missible if it is achievable:
set of actions can be elaborated by imposing a temporal 3w E E. #V E (7 and -. ). w E M#



Powsble Words W task such as plan recognition, in which one agent must
determine the mental state of another using partial in-
formation.

More complex applications demand a dynamic theory,
which is really a theory of belief and intention revision.
The formalism of cognitive structures can be extended
readily to time-varying mental states, by adding a state
index to the model. However, the theory of revision is
likely to be complicated, even more so than current belief
revision models [Giardenfors and Makinson, 1990], and
will probably involve elements of default reasoning.

Figure 4: Means-ends intentions and belief. Rferences
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4 Conclusion
We have concentrated on the static relation between in-
tention and belief, and shown how the relationship be-
tween these two can be represented simply by an ap-
propriate semantics. The static formalism is useful in
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Abstract The beliefs of the agent are represented by sentences in
Autoepistemic (AE) logic is a formal system character- a formal language. For simplicity, we consider just a
izing agents that have complete introspective access to propositional language 4o, and a modal extension 41
their own beliefs. AE logic relies on a fixed point defini- which has modal atoms of the form Lo), where 4) is a
tion that has two significant parts. The first part is a set sentence of Co.
of assumptions or hypotheses about the contents of the The arrow indicates that the intended semantics of
fixed point. The second part is a set of reflection prin- the beliefs from C0 is given by the real world, e.g., the
ciples that link sentences with statements about their belief q is the agent's judgment that q is true in the real
provability. We characterize a family of ideal AE rea- world. Of course an agent's beliefs may be false, so that
soners in terms of the minimal hypotheses that they can in fact q may not hold in the world. On the other hand,
make, and the weakest and strongest reflection prin- beliefs of the form Lo) refer to the agent's knowledge of
ciples that they can have, while still maintaining the his own beliefs, so the semantics is just the belief set
interpretation of AE logic as self-belief. These results itself.
can help in analyzing metatheoretic systems in logic An agent starts with an initial set of beliefs, the
programming. premises. Through assumptions and derivations, he ac-

cumulates further beliefs, arriving finally at a belief set
Introduction that is based on the premises. In order for an agentto be ideally introspective, the belief set r must satisfy

What kind of introspective capability can we expect an the following equations:

ideal agent to have? This question is not easily an-

swered, since it depends on what kind of model we take The premises are in r.
for the agent's representation of his own beliefs. Au- 4 IErand• -E£0 - L4)Er (1)
toepistemic logic (Moore [10]) uses a sentential or list 0 V r and 0 E Lo - -,LO E r
semantics, which looks like this: Any set r from 41 that satisfies these conditions, and

is closed under tautological consequence, will be called

Beliefs L1-stable (or simply stable) for the premises r. The
definition and term "stable set" are from Stalnaker [13].

S. • mThe beliefs are stable in the sense that an agent has
perfect knowledge of his own beliefs according to the

pv q intended semantics of L, and cannot infer any more
atoms of the form Lo or -,L0.

-p q WorlAlthough an ideal agent's beliefs will be a stable set
C containing his beliefs, not just any such set will do.

' • mosFor example, if the premises are {p V q), one stable
set is {p V q,p, Lp, L(p V q), -. -. This set contains the

-'Lp belief p, which is unwarranted by the premises. The
constraint of making the belief set stable guarantees

deia~los that the beliefs will be introspectively complete, but it
q does not constrain them to be soundly based on the

premises. Moore recognized this situation in formu-
_""" lated autoepistemic logic; his solution was to ground

"The research reported in this paper was supported by the belief set by making every element derivable from
the Office of Naval Research under Contract No. N00014- the premises and some assumptions about beliefs. The
89-C-0095. reason he needed a set of assumptions is that negative



introspective atoms (of the form -,LO) are not soundly grounded extenswn of A. The set To = T nC £ is the
derivable from the premises alone. For example, con- kernel of T.
sider the premise set {-'Lp D q, p V q). We would like In the remainder of this section we consider the min-
to conclude --Lp, since there is no reasonable way of imal set of rules S that guarantees a stable belief set
coming to believe p. But an inference rule that would for T. Because a stable set is closed under tautological
allow us to conclude -"Lp would have to take into ac- consequence, the rules S must contain a complete set
count all possible derivations, including the resufts of its of propositional rules. In addition, whenever 0 is in the
own conclusion. This type of circular reasoning can be belief set, we want to infer LO. The following two rules
dealt with by adding a set of assumptions about what fulfill these conditions.
we expect not to believe, and checking at the end of all Rule Taut. From the finite set of sentences X infer 0,
derivations that these assumptions are still valid, if 0 is a tautological consequence of X.

In autoepistemic logic, a belief set T is called
grounded in premises A if all of its members are tauto- Rule Reflective Up. From 4 infer LO), if 4 E C0.
logical consequences of A U LTo U -'LTo, where LTo = Proposition 1 Let RN be the rules Taut and Reflec-
{LO) 14 E TnC0 }, and -,LT 0 = {-,L4) I ) E Lo and 4) 0 tive Up. Every RN-eztension of A is a CO stable set
T}. This concept of groundedness is fairly weak, since it containing A.
relies not only on assumptions about what isn't believed
(-,LTD), but also about what is (LTo). In this paper we Proof. Every extension is closed under tautological con-
consider belief sets that use only assumptions -,LTo in sequence by rule Taut, and the premises must be in it,
forming the belief set T. Everything else in the belief by the properties of F. The condition 4 E r and 4 E
set will follow deductively (and monotonically) from the o -- LO E r holds because of rule Reflective Up.-- The conditior, 4) r and 4) E £0 -- -,L4) E r holds
premises A and the assumptions -,LTo. In some sense since any proposition 4) not in T will be part of the

-,LTo is the minimal set of assumptions that we can use
in this manner; for every smaller set, we have to resort assumptions -,LTo. I
to nonmonotonic rules, such as negation-as-failure [6], Proposition 2 If for every set A C £L, the S-
in order to form a stable set. For this reason we call a extension of A is an £L stable set containing A, then
belief set grounded in A and -,LTo ideally grounded. Taut and Reflective Up are admissible rules of S.

Ideally grounded logics are similar to the modal non- Proof. If Taut is not an admissible rule for some exten-
monotonic logics defined in [8, 12, 7], but allow an agent sion T, then it cannot be closed under tautological
to make fewer assumptions about his own beliefs. The consequence, and is not a stable set. Similarly, if Re-
main difference is that ideally grounded logics are more flective Up is not admissible, T will contain 4) and
grounded in the premises than modal nonmonotonic will not contain LO for some proposition 4. 1
logics, and in general will have fewer unmotivated ex- These two propositions show that the rules RN form
tensions (see Section ). the minimal logic for ideally grounded agents, in the

In the rest of this paper we explore ideally grounded sense that RN extensions produce stable belief sets, and
belief sets from the perspective of introspective reflec- they must be included in any system that produces such
tion principles. We are able to characterize the minimal sets. Further, every RN extension of A is minimalfor A:
set of principles that will yield a stable set of beliefs, there is no stable set S containing A such that So C To
and also (once nested belief operators are introduced)
the maximal ones. The resultant family of introspective Proposition 3 Every RN extension of A is a minimal
logics fill in a hierarchy between strongly and moder- stable set for A.
ately grounded autoepistefic logic [5], and suggest that Proof. Suppose there is a stable set U for A whose ker-the moderately grounded fixed-point is the best system nel is a proper subset of T's. Then U must also satisfyfor an ideal agent with perfect awareness of his beliefs, the fixed-point condition, since the rules Reflective

Minimal ideal introspection Up and Taut are admissible for stable sets (Proposi-
tion 2). By hypothesis the set -'LUO contains -,LTo,

In this and the following section we restrict the language and so UO must contain every element of To, a con-
to £L, containing no nesting of the belief operator. This tradiction. I
presents a simple system to explore the consequences of The proof of this proposition points to a more general
ideal introspection. In Section we relax this restriction result for any class of rules that are sound with respect
and consider the fully nested modal language C. to the stable set conditions. An inference rule is sound

An ideally grounded introspective agent determines with respect to stable sets if, whenever its antecedents
his belief set using the following fixed-point equation: are contained in a stable set, its consequent also must

be (e.g., Reflective Up is sound because if 4 is in a stable
T = {(0 A U LTo ks 4)}, (2) set, LO must be also).

where S is some system of inference rules. Any set Proposition 4 If the rules S are sound, then any S-
T that satisfies this equation will be called an ideally extenion of A is a minimal stable set for A.



Proof Suppose there is a stable set U for A whose ker- the discussion below that the only way a 7," could be
nel is a proper subset of T's. Then U must also satisfy present is if the third condition defining F(U) holds;
the fixed-point condition, since the rules S are admis- thus all -i must be present, and F(U) is minimal.
sible for stable sets. By hypothesis the set -OLUo con- We can reduce the definition of extensions (2) to use
tains -'LTo, and so Uo must contain every element of only the kernel:
To, a contradiction. I U = )EoJIAu-,LU I-s 41

Groundedness, autoepistemic and This gives a fixed-point condition defining extensions

default logic as
In this section we relate ideally grounded extensions U = r(U)
to their close relatives, default logic and AE exten- which is the same as for default logic. I
sions. Ideal groundedness is somewhat weaker than de- This is a simple translation of DL into a minimal AE
fault logic and strongly groundcd AE extensions, but logic. It is the same as the translation in [5] (except for
stronger than moderately grounded ones. the use of a A a instead of a), but there it was neces-

Simple as it is, the system RN is almost equivalent to sary to limit the extensions of the AE logic to strongly
default logic [11]. It is not quite as strongly grounded as grounded ones, a syntactic method based on the form
the latter; for while there exists a translation from DL of the premises. No such method is needed here.
to RN that preserves extensions, the inverse translation The stipulation on the form of L(a A a) is necessary
fails in a few cases. to prevent derivations that arise from the interaction of

We will assume that the reader is familiar with DL. modal atoms. Consider the two theories:
A default theory (W, D) consists of a set of first-order {L D P, Lp D p}
sentences W and a set of defaults D of the form {'Lp D p, L(p A p) D P)

a : #It, - - A/7.The first one has an RN extension Cn(p), because p is a

Here only the propositional case will be considered, but tautological consequence of the initial constraints. On
extending the results to first-order languages is straight- the other hand, it is not a consequence of the second set
forward (as long as no quantifying-in is allowed, e.g., of constraints, because -'Lp and L(pAp) are consistent
sentences of the form Qz.Lo(x)). from the view of propositional logic. Since there is no

To get a translation to RN, simply take W and add way to derive p by any of the rules, Cn(p) cannot be
a translation of each default rule, as follows: an extension; yet assuming -"Lp leads to the derivation
A = WU{L(aAa)A-'L-'3 1 ... D a I a E D}. of p and a contradiction. So the second set has no

(3) extensions.

Note the form of the first modal atom: L(a A^a), rather To get autoepistemic logic, we need to include more
than La. Since the beliefs of an agent are closed under assumptions about beliefs in the fixed point equation
tautological consequence, this amounts to the same con- 2. Let us define open RN extensions as solutions of the
straint on beliefs; however, the difference is important equation
for finding extensions, as will be made clear shortly.

Proposition 5 U is the kernel of an RN extension of
A iff it is a DL extension of (W, D). where LTo is the set {Lo I ) E To). Actually, the

Proof Let A = W Uf {L(a A a) A -"L--' 1 D 7 I a : presence of the Up rule is redundant here. From results

,/7 E D). We will show that the set in [5], it is easy to show the following proposition.

Proposition 6 T is an open RN extension of A iff it
F(U) = {0 E £o I A U "-LU IRN 0) is the kernel of an AE extension of A.

is the least set satisfying the properties: The kernel of an AE extension is just the part of the
W C r(U). extension from Co. The kernel completely determines

2 F(U) is closed under tautological consequence. the extension.
3 FSo the basic difference between AE and default logiceFor a : E D, if a E F(U) and -'i . U, is based on the groundedness of the extensions, that is,

AE logic lets an agent assume belief in a proposition
The first two properties follow directly from the defi- a, and use that assumption to derive the very same
nition of F(U). The third property follows by simple proposition as part of the final set of beliefs. In default
propositional inference, given the form of A. logic, all derivations must be ideally grounded, so that
To show F(U) is minimal, note that it is the set of assumptions are of the form -'Lo.
tautological consequences of W and some set 7% of The circular reasoning possible in AE logic was noted
conclusions of defaults. To make it smaller, we would in [5], and two increasingly stronger notions, moder-
have to eliminate some of the 7-. But it is clear from ate and strong groundedness, were defined as a means



of throwing out extensions that exhibit such reason- Any set from C that satisfies these conditions, and is
ing. Moderately grounded extensions of A are defined closed under tautological consequence, will be called a
as those AE extensions are also minimal stable sets con- stable set for A (in contrast to LI-stable, which does
taining A. Strongly grounded extensions use a syntactic not consider nested modal atoms).
method to eliminate all inferences from facts to belief Consider a premise set A that is drawn from 41, as
propositions, e.g., even with the premise set before. In every RN extension of A there is complete

knowledge of what facts are believed or disbelieved, i.e.,
A = {La D a, -,La D a) (5) LO) or -'LO is present for every nonmodal 4). The ad-

there is no derivation of a, because La and -'La are not dition of the nested modal atoms should make no dif-
allowed to interact. This means that different sets A, ference to this picture, except to reflect the presence of

even if they are propositionally equivalent, can generate the belief atoms in the correct way. So, for example,
different extensions. Strongly grounded extensions are if La is in an RN extension S, then LLa should be in

equivalent to default logic extensions under the simple the extension when we consider C; and similarly L-'La

translation of default rules: should be present if -'La is not in S. This much is easily
accomplished by removing the restriction on Reflective

a : 61," " -,/ -* La A--L-,#1 A .. A-^L'# D 7-. (6) Up, and giving it its usual name from modal logic.

Note the difference with the translation of (3): Lef in- Rule Necessitation. From 4 infer LO).
stead of L(a A a). This rule will add positive modal atoms; but we need

Here, rather than defining restrictions on extensions, also to add negative ones. For example, if La is in an
we have taken the approach of trying to find the min- extension, and the extension is consistent, then -'La
imal reflective principles that will allow an agent full is not in it, and this fact should be reflected in the
knowledge of his beliefs, at the same time trying to presence of -L--La. In fact we want to infer -'Lp for
make them as grounded as possible. The result is a logic every sentence p that will not be in the extension, given
that is somewhere between moderately and strongly that we have full knowledge of the belief atoms from CI-
grounded AE extensions, and which can imitate the Suppose that there is a sentence La V-'LbV c that is not
groundedness conditions of default logic, in S, where c is a nonmodal sentence. This implies that,

Let us define one fixed point logic S1 to be included for stable S, -'La E S, Lb E S, and -_Lc E S. So from
in another S2 (S1 -- S2) if for any premise set the these latter sentences we should infer -,L(LaV-_LbVc).
extensions of S1 are always extensions of S2, and for This is what the following rule does.
some premise set there is an extension of S2 that is not
an extension of S1. S1 is the stronger nonmonotonic Rule Fill. From L p, -'L(3, "'LT, and p D (V, La V
logic if we define 4) as a consequence of a premise set V/ -L/3 V 7), infer -'Lp.
just in case 4) is in every extension of the premises. The system NRN consists of the rules Taut, Neces-
The relationship among the various AE logics can be sitation, and Fill. The basic properties of NRN exten-
diagrammed as follows: sions are that they are minimal stable sets, the rules

are essential, and they are conservative extensions of
AE strongly grounded RN extensions RN fixed points.

DL with a :31/7 ý- . DL with a : ,/71 Proposition 7 If for every set A C £, thle S-extension
La A -"L-'.. D 7 L(a A a) A -"L-- D 7 of A is a stable set containing A, then Taut, Necessita-

SAIE moderatelyI FAtion, and Fill are admissible rules of S.
Agrouder _ A Proof. Taut and Nec are the same as for Proposition 2.

(7) For Fill, note that every consistent stable set contain-
ing the premises to the rule cannot contain p, and so

Nested belief must contain -'Lp. I

So far we have preferred to forego the complications of Proposition 8 Every NRN extension of A is a stable

beliefs about beliefs, using the language C1 that con- set for A.

tains no nesting of modal operators. This language and Proof. Assume that T is a consistent NRN extension of
its semantics can be extended in a straightforward way. A. By rule Nested Reflective Up, the first part of the
Let C be the propositional modal language formed from semantic definition is satisfied. For negative modal
Co by the recursive addition of atoms of the form Lp, atoms, we proceed by induction on the level of nesting
with P Em . of L. By definition and the rule Nested Reflective

The semantic equations for a stable set (1) are rod- Up, either LO) or -'LO) is in T for every nonmodal 0).
ified to take away the restriction of beliefs being in LO: Suppose a sentence s = (V. La, V V. -,Lj V 7) E Li

The premises are in r. is not in T. Then each of -La, La, and -'L7 is in
0 E -.r LOE (8) T. By rule Fill, -Lp is in T for any p D s. Hence for

r) • r -- -LO) E r every sentence v E Z1, the negative semantic rule is



satisfied, and either Lv or -'Lv is in T. By induction, section we will give a partial answer to this question by
it can be shown that the semantic rule is satisfied for examining several standard modal axiomatic schemata,
all levels of nesting. I and showing how some of them are appropriate as gen-
Extensions that are stable sets are also minimal, as eral reasoning principles, while others must be regarded

for the nonnested language. as specific assumptions about the relation of beliefs to
Proposition 9 If the rules S are sound with respect the world.Propsiton 9If he ,gle S re sundwithresect The most well-known modal schemata are the follow-
to stable sets, and the S-extension of A is a stable set, ing.
then it u a minimal stable set for A. ing.K.

Proof. Same as for Proposition 4. 1 T. LO DO

Proposition 10 If A C £1, then the kernel of every D. L -L-0 (10)
RN extension is the kernel of an NRN extension, and 4. L O D LL o

conversely, the kernel of every NRN extension is the
kernel of an RN extension. The first question we could ask is: which of these

schemata are sound with respect to the semantics of
Proof. The converse is obvious, since the rules NRN amalgamated belief sets? It should be clear that K, 4

include RN. For the original direction, assume we and 5 are all sound, since if their antecedents are true of
have an RN extension S, which contains Lok or -,L0 a stable set, then so are their consequents. The schema
for every -0 E Co. From the proof of Proposition 8, it D is true only of consistent stable sets, as we might
is clear that the set T = {A I S 1'NRN P) is a stable expect, since it says that a sentence can be in a belief
set for A, and further it is an NRN extension, since set only if its negation is not.
all elements of its kernel are derivable from A and The schema T, on the other hand, is not semantically
",L9. I valid. It is possible for an agent to believe a fact 0, but
Finally, we can show that the Fill rule is redundant that fact may not be true in the real world. Asserting T

if the schema K ([L0 A L(O D 0)] D LO) is present. for a particular fact 0 says something about the agent's

Proposition 11 The rule Fill is admissible in any sys- knowledge of how his beliefs are related to the world,
tern containiag K, Taut and Necessitation. and causes different reasoning patterns to appear in an

agent's inferences about his own beliefs.
Proof. Suppose each of --Lai, L/j and "'L7 is in A, Here is a short example of how the sentence Lp D p

together with K and all instances of K. Let p = could be used by an agent. Consider the propositions:
Ai -La, ^Aj L,8. By Taut and Up, L[p A (p D 7) D
7] is derivable, and from schema K and -'L7 we have p = The copier repairman has arrived
-,L[p A (p D -')]. Since we also have Lp by Up, this q = The copier is ok
gives (using K) -"L(p D /). Again by K and Taut, Suppose an agent believes that if he has no knowledge
we could derive -'Lv for any v such that v D (p D 7) that the repairman has arrived, the copier must be ok.
is a tautology. I Further he believes that the copier is broken. We rep-
Because nested modal atoms are propositionally dis- resent this as:

tinct from nonnested ones, it is possible to derive new
translations from default logic to sentences of r such A = {--q,--Lp D q) (11)
that all extensions are strongly grounded and hence
equivalent to default logic extensions. There are many The premises A do not have any NRN or AE extension,
ways to do this; all that is required is to translate from because while Lp is derivable, p is not. One solution is

a : #//7 to a sentence in which a and / are put under to give the agent confidence in his own beliefs, e.g.,
different nestings of modal operators that correspond to A' = {-q, -"Lp D q, Lp D p) . (12)
the single nesting semantics. For example, three such
translations are: Now there is an NRN-extension in which p is true, since

a) LLa A -'L-0 D -t from Lp the agent can derive p. It is as if the agent says,
"I believe that p, therefore p must be the case."

b) La A --LL-•'/ (9) Although one might not want to use this type of rea-
c) Laf A L-,L-',3 0 7 soning in a particular agent design, the point is that T

sanctions a certain type of reasoning about the connec-
Reflective reasoning principles tion of beliefs to the world, and is thus a "nonlogical"

The systems RN and NRN are minimal rules that might axiom, similar to "Lp D q.
be used by an agent reasoning about its own beliefs. Different modal systems can be constructed by corn-
They have the nice characteristic of giving minimal sta- bining the different modal schemata with the inference
ble sets, and so are somewhere between strongly and rules Taut and Necessitation. Using our previous defini-
moderately grounded. But are there other reflective tion of inclusion, we show the following relations among
reasoning principles that could be incorporated? In this the different versions of S-extensions.



Proposition 12 The following diagram gives all the the world. These systems do not respect sound au-
inclusion relations of ideally grounded extensions based toepistemic reasoning, and are not included in AE logic:
on the modal systems formed from the schemas K, T, the extensions generated using instances of T can dif-
D, 4, and 5. fer significantly from AE extensions. In fact, if the

AE fixed-point equation (4) is supplied with the ax-
IKS, ,D5 iom schema T, then it degenerates into monotonic S5

S-0- [9, 10]. This is because it interacts with the positive
sG • ( - K, KD (K 4 •M AE assumptions LTD, producing arbitrary ungrounded be-

\ K4, KD4 liefs. In ideally grounded logic, the T schema can serve
...................... ....... ... a useful representational purpose, and all modal sys-

tems, including S5, produce nonmonotonic fixed points.
T • S4 -- S5

Modal nonmonotonic logics
Proof. We will sketch the technique for two exam- Modal nonmonotonic logics are based on the following

ples. The basic idea is to consider a theory con- fixed point equation:
taining variations of the pair of sentences Lp D p,
-'Lp D p. This theory has the single extension with T =f I A U 'LT F-s •)
kernel Cn(p). For the system K, consider the pair where S is a modal system. McDermott [8] analyzed
Lp D p, -'L(p A p) D p. This theory has no RN ex- this equation for the systems T, S4, and S5. Subsequent
tensions. But it does have a K-extension, since in the investigations [12, 7] considered many other modal sys-
system K one infers p. Hence K extensions and RN tems, including most of those mentioned in this paper.
extensions are distinct. For the schema 4, consider The difference with ideally grounded extensions is the
the pair of sentences LLp D p, -'L(p A p) D p. No K presence of assumptions containing nested atoms, e.g.,
or RN extensions exist; but there is a K4 extension, -'L-Lp. For an ideal agent, this amounts to an as-
since in K4 the pair infers p. Similar pairs can be sumption of Lp, since any stable set not containing -'Lp
found for the other systems. I must contain Lp. In fact, modal nonmonotonic logics
The top half are systems whose extensions are all whose underlying modal system contains the schema 5

subsets of AE logic. SG stands for strongly grounded are all equivalent to AE logic. And as with AE logic,
AE extensions, and MG for moderately grounded. The the schemas 5 and T combine to collapse the fixed point
minimal ideally grounded system is NRN, and the max- to monotonic S5.
imum is K45 or KD45, which is equivalent to MG (see From the point of view of ideally grounded exten-
[5]). An ideal introspective agent would use KD45 ex- sions, the assumption set -'LT is too "large." The
tensions, which we call ideal extensions. Note that the schema 5, which in ideally grounded extensions is just
schema D does not make any difference as far as ide- a principle of reasoning about derived beliefs, in modal
ally grounded extensions are concerned; in effect, the nonmonotonic logic also interacts with nested negative
agent cannot use reasoning about self-belief to detect assumptions to produce positive ones. The inclusion
an incoherence in his beliefs, diagram for ideally grounded extensions is almost the

In fact all of the systems from NRN to KD45 are very same as that for the normal modal systems serving as
similar. Their only difference comes from premise sets a deductive base (see [2]), except for the schema D.
that contain sentences of the form But all modal nonmonotonic logics containing the K

-LP D p and 5 schemas (but not T) are equivalent to weakly
or Dp, grounded AE logic because of their large assumption

set, collapsing systems that are distinct in the ideally
where a D Lp is a theorem of the modal system. For grounded case. Because of this, modal nonmonotonic
example, in K we have L(p A p) D Lp, and a premise logic misses the moderately grounded endpoint. In
set as above with a = L(p A p) would distinguish K fact, no modal nonmonotonic logic produces only min-
from NRN, in that the former would have an extension imal stable sets: in the simplest system N, containing
containing p. Similarly, a = --L--Lp could be used for only the necessitation rule and no logical axioms, the
KS. But the sentence -"Lp D p is generally not one that premises {Lp D p, -L-,Lp D p} have two extensions,
captures a useful introspective reasoning pattern, and Cn0 and Cn(p). Only the first of these is minimal.
would probably not occur by design in an application.
There thus seems to be no practical difference between Conclusion
NRN and KD45, since the additional axioms do not We have presented the minimal logic (NRN) that an
result in potentially interesting reasoning patterns, ideal introspective agent should use. It is minimal in

The second tier is present for formal completeness. the sense that the agent makes a minimal set of assump-
The axiom schema T, we have argued, is a useful way tions about his own beliefs, and employs a minimal set
of characterizing a domain-dependent and proposition- of rules necessary to guarantee that his beliefs are sta-
dependent connection between the agent's beliefs and ble. An ideal introspective reasoner may enjoy more



powerful rules of introspection, for example the modal [8] D. McDermott, Non-monotonic logic II, Journal of
schemas 4 and 5, but he should keep the assumptions the ACM 29 (1982) 33-57.
about his beliefs to a minimum. The schema T is not [9] D. McDermott and J. Doyle, Non-monotonic logic
a sound axiom for an introspective agent, but can be I, Artificial Intelligence 13 (1-2) (1980) 41-72.
used to characterize a contingent connection between
beliefs and the world. [10] R. C. Moore, Semantical considerations on non-

The concept of ideally grounded extensions first ap- monotonic logic, Artificial Intelligence 25 (1)
peared in [5], where the system KD45 was presented (1985).
and proven equivalent to moderately grounded AE [111 R. Reiter, A logic for default reasoning, Artificial
extensions.1 Fixpoints of the systems T, S4 and S5 were Intelligence 13 (1-2) (1980).
introduced under the name of nonmonotonic ground [12] G. F. Schwarz, Autoepistemic modal logics, in:
logics in [14], and it was shown that the S5 logic was Conference on Theoretical Aspects of Reasoning
nondegenerate and consistent, i.e., does not reduce to about Knowledge, Asilomar, CA (1990).
monotonic 55, and always has an extension.

Ideally grounded logic might be employed in an anal- [13] R. C. Stalnaker, A note on nonmonotonic modal
ysis of metatheoretic systems, such as the DEMO and logic, Department of Philosophy, Cornell Univer-
SOLVE predicates in logic programming [1, 3]. Using a sity, (1980).
predicate to represent provability can cause problems [14] M. Tiomkin and M. Kaminski, Nonmonotonic de-
with syntax and consistency (see [4] for some corn- fault modal logics, in: Conference on Theoretical
ments). Instead, this research suggests using a modal Aspects of Reasoning about Knowledge, Asilomar,
operator, and defining a theory by the fixed point def- CA (1990).
inition (2). Some appropriate notion of negation-as-
failure would be used to generate the assumptions, and
the rest of the fixed point could be calculated using the
reflection rules.

References
[1] K. A. Bowen and R. A. Kowalski, Amalgamating

language and metalanguage in logic programming,
Computer and Information Science Report 4/81,
Syracuse University (1981).

[2] B. F. Chellas, Modal Logic: An Introduction (Cam-
bridge University Press, 1980).

[3] S. Costantini, Semantics of a metalogic program-
ming language, International Journal of Founda-
tions of Computer Science 1 (3) (1990).

[4] J. des Riviires and H. Levesque, The consistency
of syntactical treatments of knowledge, in: J. Y.
Halpern, ed., Conference on Theoretical Aspects of
Reasoning about Knowledge (Morgan Kaufmann,
1986) 115-130.

[5] K. Konolige, On the relation between default and
autoepistemic logic, Artificial Intelligence 35 (3)
(1988) 343-382.

[6] J. W. Lloyd, Foundations of Logic Programming
(Springer-Verlag, Berlin, 1987).

[7] W. Marek, G. F. Schwarz, and M. Truszczynski,
Modal nonmonotonic logics: ranges, characteriza-
tion, computation, in: Proceedings of the Second
International Conference on Principles of Knowl-
edle Repruentation and Reasoning, Cambridge,
MA (1991).

'A slightly different fixed-point was used because of a
technical difference in the form of monotonic inference in
modal systems.


